ArduinoISP Arduino uno & blank atmega8 bootloader burn trouble

2011 version

#include "SPI.h"
#include "pins_arduino.h"
#define RESET     SS

#define LED_HB    9
#define LED_ERR   8
#define LED_PMODE 7
#define PROG_FLICKER true

#define HWVER 2
#define SWMAJ 1
#define SWMIN 18

// STK Definitions
#define STK_OK      0x10
#define STK_FAILED  0x11
#define STK_UNKNOWN 0x12
#define STK_INSYNC  0x14
#define STK_NOSYNC  0x15
#define CRC_EOP     0x20 //ok it is a space...

void pulse(int pin, int times);

void setup() {
  Serial.begin(9600);
  SPI.setDataMode(0);
  SPI.setBitOrder(MSBFIRST);
  // Clock Div can be 2,4,8,16,32,64, or 128
  SPI.setClockDivider(SPI_CLOCK_DIV128);
  pinMode(LED_PMODE, OUTPUT);
  pulse(LED_PMODE, 2);
  pinMode(LED_ERR, OUTPUT);
  pulse(LED_ERR, 2);
  pinMode(LED_HB, OUTPUT);
  pulse(LED_HB, 2);
  
}

int error=0;
int pmode=0;
// address for reading and writing, set by 'U' command
int here;
uint8_t buff[256]; // global block storage

#define beget16(addr) (*addr * 256 + *(addr+1) )
typedef struct param {
  uint8_t devicecode;
  uint8_t revision;
  uint8_t progtype;
  uint8_t parmode;
  uint8_t polling;
  uint8_t selftimed;
  uint8_t lockbytes;
  uint8_t fusebytes;
  uint8_t flashpoll;
  uint16_t eeprompoll;
  uint16_t pagesize;
  uint16_t eepromsize;
  uint32_t flashsize;
} 
parameter;

parameter param;

// this provides a heartbeat on pin 9, so you can tell the software is running.
uint8_t hbval=128;
int8_t hbdelta=8;
void heartbeat() {
  if (hbval > 192) hbdelta = -hbdelta;
  if (hbval < 32) hbdelta = -hbdelta;
  hbval += hbdelta;
  analogWrite(LED_HB, hbval);
  delay(40);
}


void loop(void) {
  // is pmode active?
  if (pmode) digitalWrite(LED_PMODE, HIGH); 
  else digitalWrite(LED_PMODE, LOW);
  // is there an error?
  if (error) digitalWrite(LED_ERR, HIGH); 
  else digitalWrite(LED_ERR, LOW);

  // light the heartbeat LED
  heartbeat();
  if (Serial.available()) {
    avrisp();
  }
}

uint8_t getch() {
  while(!Serial.available());
  return Serial.read();
}
void fill(int n) {
  for (int x = 0; x < n; x++) {
    buff[x] = getch();
  }
}

#define PTIME 30
void pulse(int pin, int times) {
  do {
    digitalWrite(pin, HIGH);
    delay(PTIME);
    digitalWrite(pin, LOW);
    delay(PTIME);
  } 
  while (times--);
}

void prog_lamp(int state) {
  if (PROG_FLICKER)
    digitalWrite(LED_PMODE, state);
}

uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
  uint8_t n;
  SPI.transfer(a); 
  n=SPI.transfer(b);
  //if (n != a) error = -1;
  n=SPI.transfer(c);
  return SPI.transfer(d);
}

void empty_reply() {
  if (CRC_EOP == getch()) {
    Serial.print((char)STK_INSYNC);
    Serial.print((char)STK_OK);
  } 
  else {
    error++;
    Serial.print((char)STK_NOSYNC);
  }
}

void breply(uint8_t b) {
  if (CRC_EOP == getch()) {
    Serial.print((char)STK_INSYNC);
    Serial.print((char)b);
    Serial.print((char)STK_OK);
  } 
  else {
    error++;
    Serial.print((char)STK_NOSYNC);
  }
}

void get_version(uint8_t c) {
  switch(c) {
  case 0x80:
    breply(HWVER);
    break;
  case 0x81:
    breply(SWMAJ);
    break;
  case 0x82:
    breply(SWMIN);
    break;
  case 0x93:
    breply('S'); // serial programmer
    break;
  default:
    breply(0);
  }
}

void set_parameters() {
  // call this after reading paramter packet into buff[]
  param.devicecode = buff[0];
  param.revision   = buff[1];
  param.progtype   = buff[2];
  param.parmode    = buff[3];
  param.polling    = buff[4];
  param.selftimed  = buff[5];
  param.lockbytes  = buff[6];
  param.fusebytes  = buff[7];
  param.flashpoll  = buff[8]; 
  // ignore buff[9] (= buff[8])
  // following are 16 bits (big endian)
  param.eeprompoll = beget16(&buff[10]);
  param.pagesize   = beget16(&buff[12]);
  param.eepromsize = beget16(&buff[14]);

  // 32 bits flashsize (big endian)
  param.flashsize = buff[16] * 0x01000000
    + buff[17] * 0x00010000
    + buff[18] * 0x00000100
    + buff[19];

}

void start_pmode() {
  SPI.begin();
  digitalWrite(RESET, HIGH);
  pinMode(RESET, OUTPUT);
  digitalWrite(SCK, LOW);
  delay(20);
  digitalWrite(RESET, LOW);
  spi_transaction(0xAC, 0x53, 0x00, 0x00);
  pmode = 1;
}

void end_pmode() {
  SPI.end();
  digitalWrite(RESET, HIGH);
  pinMode(RESET, INPUT);
  pmode = 0;
}

void universal() {
  int w;
  uint8_t ch;

  fill(4);
  ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
  breply(ch);
}

void flash(uint8_t hilo, int addr, uint8_t data) {
  spi_transaction(0x40+8*hilo, 
  addr>>8 & 0xFF, 
  addr & 0xFF,
  data);
}
void commit(int addr) {
  if (PROG_FLICKER) prog_lamp(LOW);
  spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
  if (PROG_FLICKER) {
    delay(PTIME);
    prog_lamp(HIGH);
  }
}

//#define _current_page(x) (here & 0xFFFFE0)
int current_page(int addr) {
  if (param.pagesize == 32)  return here & 0xFFFFFFF0;
  if (param.pagesize == 64)  return here & 0xFFFFFFE0;
  if (param.pagesize == 128) return here & 0xFFFFFFC0;
  if (param.pagesize == 256) return here & 0xFFFFFF80;
  return here;
}


void write_flash(int length) {
  fill(length);
  if (CRC_EOP == getch()) {
    Serial.print((char) STK_INSYNC);
    Serial.print((char) write_flash_pages(length));
  } 
  else {
    error++;
    Serial.print((char) STK_NOSYNC);
  }
}

uint8_t write_flash_pages(int length) {
  int x = 0;
  int page = current_page(here);
  while (x < length) {
    if (page != current_page(here)) {
      commit(page);
      page = current_page(here);
    }
    flash(LOW, here, buff[x++]);
    flash(HIGH, here, buff[x++]);
    here++;
  }

  commit(page);

  return STK_OK;
}

#define EECHUNK (32)
uint8_t write_eeprom(int length) {
  // here is a word address, get the byte address
  int start = here * 2;
  int remaining = length;
  if (length > param.eepromsize) {
    error++;
    return STK_FAILED;
  }
  while (remaining > EECHUNK) {
    write_eeprom_chunk(start, EECHUNK);
    start += EECHUNK;
    remaining -= EECHUNK;
  }
  write_eeprom_chunk(start, remaining);
  return STK_OK;
}
// write (length) bytes, (start) is a byte address
uint8_t write_eeprom_chunk(int start, int length) {
  // this writes byte-by-byte,
  // page writing may be faster (4 bytes at a time)
  fill(length);
  prog_lamp(LOW);
  for (int x = 0; x < length; x++) {
    int addr = start+x;
    spi_transaction(0xC0, (addr>>8) & 0xFF, addr & 0xFF, buff[x]);
    delay(45);
  }
  prog_lamp(HIGH); 
  return STK_OK;
}

void program_page() {
  char result = (char) STK_FAILED;
  int length = 256 * getch();
  length += getch();
  char memtype = getch();
  // flash memory @here, (length) bytes
  if (memtype == 'F') {
    write_flash(length);
    return;
  }
  if (memtype == 'E') {
    result = (char)write_eeprom(length);
    if (CRC_EOP == getch()) {
      Serial.print((char) STK_INSYNC);
      Serial.print(result);
    } 
    else {
      error++;
      Serial.print((char) STK_NOSYNC);
    }
    return;
  }
  Serial.print((char)STK_FAILED);
  return;
}

uint8_t flash_read(uint8_t hilo, int addr) {
  return spi_transaction(0x20 + hilo * 8,
  (addr >> 8) & 0xFF,
  addr & 0xFF,
  0);
}

char flash_read_page(int length) {
  for (int x = 0; x < length; x+=2) {
    uint8_t low = flash_read(LOW, here);
    Serial.print((char) low);
    uint8_t high = flash_read(HIGH, here);
    Serial.print((char) high);
    here++;
  }
  return STK_OK;
}

char eeprom_read_page(int length) {
  // here again we have a word address
  int start = here * 2;
  for (int x = 0; x < length; x++) {
    int addr = start + x;
    uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);
    Serial.print((char) ee);
  }
  return STK_OK;
}

void read_page() {
  char result = (char)STK_FAILED;
  int length = 256 * getch();
  length += getch();
  char memtype = getch();
  if (CRC_EOP != getch()) {
    error++;
    Serial.print((char) STK_NOSYNC);
    return;
  }
  Serial.print((char) STK_INSYNC);
  if (memtype == 'F') result = flash_read_page(length);
  if (memtype == 'E') result = eeprom_read_page(length);
  Serial.print(result);
  return;
}

void read_signature() {
  if (CRC_EOP != getch()) {
    error++;
    Serial.print((char) STK_NOSYNC);
    return;
  }
  Serial.print((char) STK_INSYNC);
  uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);
  Serial.print((char) high);
  uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
  Serial.print((char) middle);
  uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);
  Serial.print((char) low);
  Serial.print((char) STK_OK);
}
//////////////////////////////////////////
//////////////////////////////////////////

1/2