Go Down

Topic: AC Light Dimming (Read 10888 times) previous topic - next topic

Quote
What do i have to change to make the flicker go away?


50hz gives a zero cross detection every 10ms
So, 60hz gives a zero cross detection every 8ms

I think the last timer interruption (49) appears after a new zero cross.

You have to recalculate all the values retard[] (reduce the value)

but first, you can test by limiting the number of timer interruption by change value 49 in
Code: [Select]
if (c2>=49){ to 45, or maybe less

Don't forget to feedback  your test.

Gromain
"pour résoudre un gros problème, il est souvent plus facile de le diviser en petits problèmes élémentaires..."

projet domotique xPLDuino
IRC: freenode #xplduino

Dash

Thanks big time.
I changed the value to 41 and the flicker is nearly gone.  

Here is the code I translated:


[code]

/*
DIMMERS 120V 60Hz (8-channel Possibly more)
   
by Gromain59
Translated By Mike Deuschle
mike.dausch@gmail.com

Material part:
- Triac driven by a digital output via an optocoupler
- AC opto-coupler for detecting the zero crossing of phase

Software part:
- A hardware interrupt input 2 at the zero crossing of phase
- A software interrupt that occurs between 100us and 1400us.
     => Interrupt interval is variable to obtain a light curve by linear orders, because of the shape of the sinusoidal signal.
we have:
1. Detection of the transition to zero on input 2
2. execution of detection_zero (): processing channel with a setpoint of 0% and 100%
3. deactivating hardware interrupt, enabling the software interrupt on the basis of delay

  • 4. interrupt after delay [c2] ?s (c2 = 0)
    5. execution of controle_canaux ()
         => Index increment c2
         and if c2 is greater than 49, then this is the last cycle
               => Turn OFF of all channels
               => Activate the hardware interrupt
         otherwise:
               => Activation of output channels with 98% to record (either a 469?s delay) or if
               => Interrupt reconfiguration of time with another delay, delay [c2]
             
    To change the setpoint of a channel, you must send via the serial monitor a frame of the form:
               " D/0/45/F"
         => Space
         => "D" to indicate the start of the frame
         => "/" As separator
         => The affected channel (0 to 7 here)
         => "/" As separator
         => The desired level (from 0% to 100%)
         => "/" As separator
         => "F" to indicate the end of the frame
       
         Once the frame received, the function sscanf is responsible for retrieving data.
         It converts the received record levels (0 to 50 levels)
       
    Resources:
    http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1230333861/30 for first test
    http://www.hoelscher-hi.de/hendrik/english/dimmer.htm for electronics
    http://www.abcelectronique.com/bigonoff/domocan.php?par=3efd4 for electronics and soft (PIC)
    arduino forum

    */

    #include <TimerOne.h>  // for the interruption time http://www.arduino.cc/playground/Code/Timer1
    #include <stdio.h>  // for the treatment of the frame containing the change orders

                         // timeout value for the reception of the frame
    int tps_max_lecture = 200; // reading code, counter max between all the characters of a code
    int tps_max_carte = 1000; // max meter between reception of a character


    long curve[] = {
    1469 , // 98 % 1 225,3V retard / zéro = 1469 ms
    287 , // 96 % 2 222,7V retard / zéro = 1867 ms
    234 , // 94 % 3 220,6V retard / zéro = 2154 ms
    201 , // 92 % 4 218,2V retard / zéro = 2388 ms
    180 , // 90 % 5 215,4V retard / zéro = 2589 ms
    164 , // 88 % 6 213,3V retard / zéro = 2769 ms
    152 , // 86 % 7 210,8V retard / zéro = 2933 ms
    143 , // 84 % 8 208V retard / zéro = 3085 ms
    135 , // 82 % 9 205,7V retard / zéro = 3228 ms
    129 , // 80 % 10 202,8V retard / zéro = 3363 ms
    124 , // 78 % 11 200,5V retard / zéro = 3492 ms
    120 , // 76 % 12 197,6V retard / zéro = 3616 ms
    116 , // 74 % 13 195,2V retard / zéro = 3736 ms
    112 , // 72 % 14 192,4V retard / zéro = 3852 ms
    110 , // 70 % 15 189,6V retard / zéro = 3964 ms
    108 , // 68 % 16 186,8V retard / zéro = 4074 ms
    106 , // 66 % 17 184V retard / zéro = 4182 ms
    105 , // 64 % 18 180,9V retard / zéro = 4288 ms
    103 , // 62 % 19 178,1V retard / zéro = 4393 ms
    102 , // 60 % 20 175,1V retard / zéro = 4496 ms
    101 , // 58 % 21 172,1V retard / zéro = 4598 ms
    101 , // 56 % 22 168,9V retard / zéro = 4699 ms
    100 , // 54 % 23 166,2V retard / zéro = 4800 ms
    100 , // 52 % 24 162,6V retard / zéro = 4900 ms
    100 , // 50 % 25 159,3V retard / zéro = 5000 ms
    101 , // 48 % 26 155,8V retard / zéro = 5100 ms
    100 , // 46 % 27 152,6V retard / zéro = 5201 ms
    101 , // 44 % 28 149,1V retard / zéro = 5301 ms
    102 , // 42 % 29 145,3V retard / zéro = 5402 ms
    103 , // 40 % 30 141,8V retard / zéro = 5504 ms
    105 , // 38 % 31 138V retard / zéro = 5607 ms
    106 , // 36 % 32 133,8V retard / zéro = 5712 ms
    108 , // 34 % 33 130V retard / zéro = 5818 ms
    110 , // 32 % 34 126V retard / zéro = 5926 ms
    112 , // 30 % 35 121,7V retard / zéro = 6036 ms
    116 , // 28 % 36 117,1V retard / zéro = 6148 ms
    120 , // 26 % 37 112,6V retard / zéro = 6264 ms
    124 , // 24 % 38 107,7V retard / zéro = 6384 ms
    129 , // 22 % 39 102,4V retard / zéro = 6508 ms
    135 , // 20 % 40 97,2V retard / zéro = 6637 ms
    143 , // 18 % 41 92V retard / zéro = 6772 ms
    152 , // 16 % 42 85,7V retard / zéro = 6915 ms
    164 , // 14 % 43 79,4V retard / zéro = 7067 ms
    180 , // 12 % 44 72,8V retard / zéro = 7231 ms
    201 , // 10 % 45 64,8V retard / zéro = 7411 ms
    234 , // 8 % 46 56,4V retard / zéro = 7612 ms
    286 , // 6 % 47 46V retard / zéro = 7846 ms
    399 , // 4 % 48 32,4V retard / zéro = 8132 ms
    500 , //
    1469  // 2 % 49 0V retard / zéro = 8531 ms
    };

    int set[] = {    // set channel level (0 = 100%, 50 = 0%)
    0, // Output 0
    0, // output 1
    0, // output 2
    0, // output 3
    0, // output 4
    0, // output 5
    0, // output 6
    0, // output 7
    };

    int output [] = { // assign a pin for each channel.
    4, // Output 0
    3, // output 1
    5, // output 2
    0, // output 3
    0, // output 4
    0, // output 5
    0, // output 6
    0, // output 7
    };

    volatile int c1 = 0; // index c1 for reading data from each channel (No pin, luggage)
    volatile int c2 = 0; // c2 index number passing through the loop control phase delay (49 passages)

    // Definition of macros to drive the output
    #define lightON(index) (digitalWrite(output[index], HIGH))
    #define lightOFF(index) (digitalWrite(output[index], LOW))


    void setup () {// Start of setup

    // Initialize the serial
    Serial.begin (9600);

    // Initialize the channel outputs (triacs)
         for (c1 = 0; c1 <= 7; c1++) {// we traverse the 8 channels to configure
                     pinMode(output[c1], OUTPUT); // we associate each channel has a pin, which sets the output digital
                     lightOFF(output[c1]); // and we switch off the output
                                     }

         Serial.println( "Gromain 8-CHANNEL DIMMER v0.2");
         Serial.println( "FRAME EXPECTED: <space> 'D' / 'Output Port' / 'Value of DIM' / 'F'");


    // Initialize the interruption time Timer1
         Timer1.initialize(); // Initialize TimerOne library for the freq we need


    // Attach the interrupt 0 to pin 2 for the detection of zero crossing (Zero Cross Detection)
         attachInterrupt(0, detection_zero, FALLING); // Attach an Interrupt to Pin 2 (Interrupt 0) for Zero Cross Detection

    } // End of setup

    void detection_zero() {// function associated with the interrupt 0

         detachInterrupt(0); // disables the interrupt on zero crossing

         c2 = 0;
       
         for (c1 = 0; c1 <= 7; c1++) {// we scan the 8 outputs to check their orders
                 if (set[c1] >= 49 ) {// if set 0%
                     lightOFF(c1); // then we switch off
                 }
             
               if (set[c1]<= 0){// if set 100%
                     lightON(c1); // then we light
               }
             
         }

         Timer1.attachInterrupt(controle_canaux, curve[c2]); // we attach the interruption time
       
    } // End of detection_zero

    void controle_canaux() {// here we verified whether the triac must be initiated

        c2=c2++;
       
         attachInterrupt(0, detection_zero, FALLING); // we attach an interrupt on pin 2 (interrupt 0)
         Timer1.detachInterrupt(); // we detach the interruption time

         if (c2 >= 41) {// If last cycle then (best at 41 for 60Hz)

         for (c1 = 0; c1 <= 7; c1++) {// we scan the 8 outputs
               lightOFF(c1);  // and we put out the channel for the next cycle
         }

       
         }
    else { // else

         Timer1.attachInterrupt(controle_canaux, curve[c2]); // we attach a break time

         for (c1 = 0; c1 <= 7; c1++) { // we scan the 8 outputs to check their orders
                 if (set[c1] == c2) // if is set equal to the processed (no change in the loop)
               {lightON(c1);} // then we light the channel
         }
                   
    } // End function controle_canaux

    }
    void loop() {// Main Loop

         int n = 0;
       
         if (Serial.available ()> 0) {
               n = lecture();
         }

    }

    int lecture() {// read a frame type: "D / aaa / bbb / F
                                 // Or "D" starting character frame
                                 // Or "yyyy" No output which is set to modify
                                 // Or "bbbb" new set of output (between 0 and 100%)



         char buf[15] = "              ";
         int timeout = 0;
         int i = 0;
         int n1 = 0;
         int n2 = 0;
         char c1, c2;
       
         while (Serial.available() > 0) {
               if(i!=14){
               buf = Serial.read ();
               i++;
               }

         timeout++;
       
         if (timeout>tps_max_lecture)
               {Serial.println("T1");
               return -1;
               }
         if (timeout> tps_max_lecture)
               {Serial.println("T2");
               return -2;
               }
           }
         sscanf(buf, "%c/%d/%d/%c", &c1, &n1, &n2, &c2); // decoding frame
       
         if (c1 == 'D' && c2 == 'F') {// Check if the plot starts out by D and ending in F
             
               int nouv_cons = n2;  // we store the new value for the work then
             
               nouv_cons = constrain(nouv_cons, 0, 100); // on the new terminal value between 0 and 100%

Dash

... Continue (i ran out of characters)

               
           Serial.print("Output ");
           Serial.print(n1);
           Serial.print(" , new value of: ");
           Serial.print(nouv_cons);
           Serial.print(" % index, delay: ");
               
           set[n1] = (50 - (nouv_cons / 2)); // it converts the value 0-100% in no phase delay
               
           Serial.println (set[n1]);
     }
     else // if character from the beginning or end of frame not recognized
     {Serial.println("Code Unknown");}
   
     return i;
   
}

cgriffin

#48
Nov 29, 2010, 05:43 pm Last Edit: Nov 29, 2010, 05:46 pm by cgriffin Reason: 1
Can a BTA20 be dropped in place of the BTA10 to provide more amperage.

I need to control several 2kw heating elements

Tesla

You should be able to use a BTA20, as long as you make the proper adjustments to the circuit to safely carry the additional current.  Larger traces, wider trace spacing, etc.  As always, give yourself extra space around the components and traces, and once it's all working, I would suggest coating the solder side of your board with a protectant, such as silicone or epoxy.  This makes repair difficult to impossible, but also makes the thing much safer in the work environment.

--Tesla

cgriffin

Very cool,  thank-you very much.  

I will reply back with the results if I don't turn myself into a cinder.

 

Tesla

Just keep your hands and feet clear of the system while it's energized, and be aware of stray bits of wire and such. Make sure whatever you have it set on is clean and non-conductive. I usually use a chunk of cardboard if I'm testing it outside a proper mount or enclosure.
 Good luck with it!

--Tesla

cgriffin

Still working on this,   out of curiosity what would be required to run on 220V AC?

Go Up