
 

 

 

  
  

Abstract— Although dead reckoning based on odometry and 

inertial sensors is essential for a robotic localization system, none 

of previous works gives reliable and accurate position estimates 

on irregular terrain over long periods of time. Classical ap-

proaches use one estimator (such as a Kalman filter) with a sin-

gle system model. However the single system model is not good to 

deal with both of slip and no-slip situations because of the dy-

namics changes. In this paper, a multiple model approach that 

uses two Kalman filters is presented: one Kalman filter ac-

counting for no-slip condition and the other for slip condition. 

The Interacting Multiple Model (IMM) is adopted to switch two 

Kalman filters depending on whether slip occurs or not, and 

gives the weighted sum of two filter estimates. Experimental 

results are included to validate our approach. 

I. INTRODUCTION 

AIT (Samsung Advanced Institute of Technology) has 

been developing cleaning robots for home environment, 

which can generate the coverage path and clean the floor 

minimizing the overlap of the traveled region. To meet this 

requirement, the robots need the capability of localization and 

map building. Simultaneous localization and map building 

algorithms are usually based on a Kalman filter or a particle 

filter which comprises two steps of prediction step and cor-

rection step [1]. In the prediction step, robot pose is estimated 

using odometry (such as wheel encoders) and in the correction 

step, the estimated robot pose is corrected by the measurement 

of other sensor signals. However, in home environment, a 

variety of obstacles such as books, rugs, and wires etc. on the 

floor cause the robot to slip and accumulate odometry errors. 

The odometry errors degrade the robot pose and map accu-

racies at the prediction step and make algorithms fail at worst. 

Another problem for the cleaning robot in the home envi-
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ronment is immobilization. The cleaning robot is often tangled 

with electric wires or immobilized on rugs or doorsills. 

Autonomous robots should quickly detect the slip and im-

mobilization in order to take appropriate actions, such as 

moving backward immediately and planning an alternative 

route to escape from the irregular terrain. 

The researches on the slip detection and compensation can 

be categorized into two groups. One is exteroceptive method 

to utilize the absolute position measurement and the other is 

proprioceptive method to use only internal sensors like en-

coder, gyro, and accelerometer. In the field of exteroceptive 

method, Helmick et al. [2] proposed a system for the slip de-

tection and compensation in a Mars rover based on visual 

odometry and inertial measurements through a Kalman filter. 

The combination of visual odometry with an absolute heading 

sensor was shown to be effective for robust long range navi-

gation [3]. Absolute position measurements such as GPS 

make it simple to detect wheel slip and immobilization [4]. 

However, in all of the above exteroceptive methods, visual 

odometry is sensitive to illumination changes and GPS signal 

is not available in home environment. For those reasons, we 

will consider proprioceptive methods only in our paper. 

In the field of proprioceptive method, wheel slip can be 

estimated through the use of encoders by comparing the speed 

of driven wheels with that of undriven wheels [5].  Ojeda and 

Borenstein proposed an indicator of wheel slip by comparing 

redundant wheel encoders against each other and again a yaw 

gyro [6]. These methods need redundant wheels and encoders. 

Ojeda and Borenstein also proposed another slip estimator 

based on motor current [7]. However this technique requires 

accurate current measurement and terrain specific parameter 

tuning. Ward and Iagnemma [8] proposed a model-based 

wheel slip detection by utilizing a tire traction/braking model 

and weak constraints for a Kalman filter. 

To improve dead reckoning accuracy, many works have 

focused on calculating exact heading angle by utilizing gy-

roscopes and other sensors (such as a electronic compass or a 

tilt sensor) [9,10,11]. But these methods accumulate position 

error in the longitudinal direction of the robot. Barshan et al. 

proposed inertial navigation systems using error models of 

inertial sensors [12,13,14]. However the position estimation 

was reliable over only short period because of the accumula-

tive errors of accelerometers. The sensor fusion of odometry 

and gyroscopes has been proposed in the frame of Kalman 

filtering to calculate the robot position and heading angle 

[15,16,17,18]. But, they are not applicable for navigation on 
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irregular terrain because odometry gives false information 

when slip occurs. Reliable and accurate dead reckoning 

should be developed for the operation on irregular terrain over 

long periods of time. 

All of the pervious works use one estimator (such as a 

Kalman filter) with a single system model regardless of 

whether slip occurs or not. However, we observed that two 

system models to treat no-slip and slip condition differently, 

should be introduced to improve dead reckoning accuracy 

because the kinematic model of a robot on normal floor is 

totally different from that on slippery floor. 

To handle several parallel models, the IMM (Interacting 

Multiple Model) [19] and particle filter based algorithms were 

proposed. Zhang et al. [20] applied the IMM for fault detec-

tion and diagnosis, where the system structure and parameters 

change according to the occurrence of system failures. Freitas 

et al. [21] introduced an estimation technique to combine 

particle filters with Kalman filters for diagnosis in mobile 

robots. Plagemann et al. [22] applied techniques of Gaussian 

process classification and regression for learning proposal 

distributions of a particle filter to detect failures. The IMM is 

computationally more efficient than these sampling based 

techniques. 

In this paper, a multiple model approach that uses two 

Kalman filters is proposed. In our approach, one Kalman filter 

accounts for no-slip condition and the other for slip condition. 

The IMM is adopted to give the automatic transition between 

them according to floor condition. The mode probability in 

the IMM works as an indicator of slippage and the final es-

timate of the IMM is a weighted sum of two Kalman filter 

estimates. In such a way, the IMM provides a unified ap-

proach for slip detection and compensation. 

This paper is organized as follows. In section 2 we explain 

why multiple models are needed, and in section 3 two EKFs 

(Extended Kalman filters) relevant to slip condition are de-

signed, and in section 4 our multiple model approach using the 

IMM is presented. In section 5 experimental results are pre-

sented. In section 6 conclusions are drawn from this work and 

future works are suggested. 

II. NEED FOR MULTIPLE MODELS 

The error covariance of odometry and accelerometer will be 

examined to explain the need for our multiple model approach. 

We consider a cleaning robot with differential drive kine-

matics (i.e., robots that have two independently driven 

wheels). 

A. Properties of odometry errors 

In case of no-slip, the relative position and orientation of the 

robot on even terrain can be modeled using odometry as fol-

lows: 
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             (1) 

where , ,x y and ψ  are the relative position and orientation of 

the robot, ,R kU and ,L kU  are the right and left wheel incre-

mental distances, respectively, and D is the wheelbase of the 

robot. U∆ and D∆  represent systematic errors caused by the 

inaccurate modeling, limited system performance and so on 

[23].  

For simplicity, we assume that the robot moves along the 

straight line then , ,R k L kU U=  is obtained. The position error 

between the estimated and the real is given by 

1 ,k k R kx x U Uδ δ −= + ∆ ⋅ . 

Here U∆ is assumed to be white noise with 2( )E U β∆ = . 

Then the variance of the position error is calculated by 

2 2

,

1

( )
k

k R i

i

E x Uδ β
=

= ∑ . 

When the robot moves with constant speed ( ,R iU α= ), the 

above becomes 
2 2( )kE x kδ α β= ⋅ ⋅ .                                                             (2) 

The variance increases linearly proportional to time index k. 

When the robot moves over uneven terrain and wheel slip-

page occurs, (1) is not applicable any more. The wheel slip, γ , 

can be defined as 1
E

R

υ
γ

ω
= − , with υ  as the linear speed of 

the wheel, R as wheel diameter, and 
E

ω as the angular rate of 

the wheel measured by encoders [7]. When 1γ = , the linear 

velocity is zero and the position error is given by 

1 ,k k R kx x Uδ δ −= + . The variance of position error is calcu-

lated as 2 2

,

1

( ) ( )
k

k R i

i

E x Uδ
=

= ∑ . When the robot moves with 

constant speed ( ,R iU α= ), the above becomes 

2 2 2( )
k

E x kδ α= ⋅                                                                   (3) 

Compared to the no-slip situation, the variance increases very 

rapidly because it is proportional to the square of k and 

1β ≪ . 

B. Properties of accelerometer errors 

Accelerometers measure the linear acceleration of the robot 

body. The position of the robot can be calculated by twice 

integration of it. But the position error increases rapidly with 

integration time and it needs other schemes like periodic ab-

solute position sensing to reset the error. The position of the 

robot is given by 21
21k k k k

x x t a tυ+ = + ∆ + ∆  
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with 
1k k k

a tυ υ+ = + ∆ , 
k
a  as the linear acceleration, and t∆  

as the sampling time. White noise is assumed to be added to 

k
a . The variance of the position error is calculated by the 

followings: 
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where xδ , δυ , and aδ are the position error, velocity error, 

and accelerometer error, respectively. After kth integration, 

the position error variance becomes as follows: 
2 2 2

3 2

( )
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k k
E x t

δυ σ

δ δυ σ
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3 2

2 4 24 6 5
( )

12
k a

k k k
E x tδ σ

− +
= ∆ ⋅                                          (4) 

where 2 2( )
k a

E aδ σ=  and the initial variance at k=0 is assumed 

to be zero. Thus the variance increases in proportion to the 

cube of k . 

C. Introduction of multiple models 

Fig. 1 shows the exemplary simulation result of the position 

error variances of odometry and an accelerometer. In the 

simulation, (2), (3), and (4) were used assuming that the robot 

moves forward with the constant velocity ( 30cm/secα = ) and 

initial error covariance is zero. The sampling time t∆  is 

0.01sec and other simulation parameters are given by 
21cm / sec

a
σ =  and  20.005cmβ = . 

In case of no-slip, regarding the graph (a) and (b) of Fig. 1, 

the accelerometer has a smaller variance than the odometry 

until 
it   and after it , the variance of the accelerometer in-

creases very fast. To fuse data from two sensors, it is obvious 

that we should weigh more data of the accelerometer until 
it  

and weigh more data of the odometry after 
it . A Kalman filter 

performs this kind of sensor fusion optimally and efficiently. 

In case of slip, regarding the graph (b) and (c) of Fig. 1, the 

odometry data has too large variance compared to the accel-

erometer data. So the data fusion of two sensors based on 

Kalman filter can’t expect the performance improvement 

contrary to the case of no-slip. And it should be noticed that 

the expectation of the odometry error is not zero in the slip 

situation, thus it violates the assumption of zero mean white 

noise of Kalman filters. 

From the above observation, we conclude that conventional 

Kalman filters using one system model is not good to deal with 

both of the slip and no-slip situations. In this paper, we pro-

pose a new method to use two system models and switch them 

according to the condition of slip or no-slip. 

III. EXTENDED KALMAN FILTER DESIGN 

A. Robot Kinematic Model 

The robot moving on the irregular floor of home environ-

ments involves the attitude change. The attitude of a robot is a 

set of three angles measured between the robot’s body and the 

absolute world coordinate frame. The body frame can be 

thought of as embedded in the robot body so that its x-axis 

points forward, the y-axis points to the left, and the z-axis 

points upward. The body axes are labeled x , yb b , and zb . 

Referring to Fig. 2, three Euler angles, roll θ , pitch φ  and 

yaw ψ are defined. To deal with the general three dimen-

sional motion on the irregular floor, (1) should be extended to 

account for the tilt of the robot, which will be explained below 

in detail. The EKF for no-slip condition is designed to fuse 

data from encoders and inertial sensors, and the one for slip 

condition utilizes only inertial sensors. 

B. EKF for No-slip Condition 

There are two basic process models in a Kalman filter. The 

first is the system prediction describing how the state vector 

changes in time. The second is the measurement model which 

defines the relationship between the state vector and any 

measurement processed by the filter. As shown by graph (a) 

and (b) in Fig. 1, two data from encoders and accelerometers 
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Fig. 1. Simulation result of position error variance  

 
Fig. 2 . Cleaning robot and Euler angles 
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can complement each other by sensor fusion. Fig. 3 shows the 

structure of the EKF for no-slip condition. This EKF repre-

sents the mode 1 of the IMM. 

 

a. Prediction model 

To describe the 3-D motion of the robot, the state vector is 

defined as 1 ( , , , , , , , , , , , )x x y y z y x TX x y a aυ υ ψ φ θ ω ω ω= . The 

inputs of the system are 
1 , , , , ,( , , , , )x acc y acc x gyro y gyro z gyro T

k k k k k k
u a a ω ω ω= where ,x acc

k
a and ,y acc

k
a  

are  the mean robot accelerations along xb and yb axis 

measured by the accelerometer and , ,,x gyro y gyro

k k
ω ω and ,z gyro

k
ω  

are the mean angular rates measured by the gyro during the 

k-th sampling interval. The superscript “1” of 1 1 and 
k

X u  

denotes the mode 1 of the IMM. The state equation for the 

robot motion 1 1 1 1 1

1 ( , )k k kX f X u ξ+ = +  is 

21
1 2

2 11
12
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1 4
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a a g φ ξ+ = + +ɶ                                                 (5) 

1

1 5

y y y
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, 1

1 6
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k k k k
a a g φ θ ξ+ = − +ɶ ɶ  

, 1
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k k
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, 1

1 11

y y gyro

k kω ω ξ+ = +  

, 1

1 12

x x gyro

k kω ω ξ+ = +  

where 1( ) / 2k k kψ ψ ψ += +ɶ , 1( ) / 2k k kφ φ φ += +ɶ , and 

1( ) / 2k k kθ θ θ += +ɶ  are the average vehicle angles during the 

sampling interval t∆ ; 1ξ  is a white noise process vector with 

its covariance matrix 1Q ; 1

i
ξ is the i-th element of vector 1ξ ; 

|g| is the magnitude of gravity.  

A simple method to calculate the Euler angles at time k+1 is 

as follows: 

1 1 1( , , ) ( , , ) ( , , )T T x y z T

k k k k k k k k kt t tψ φ θ ψ φ θ ω ω ω+ + + = + ∆ ∆ ∆          ( 6) 

But this method accumulates much numerical integration er-

rors. It is known that the numerical integration in the direc-

tional cosine matrix has better accuracy [24]. Thus we first 

transform the Euler angles ( , , )Tk k kψ φ θ to the direction cosine 

matrixCk
. 
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( 7) 

The updated 1Ck+ from time k to k+1 is 

11 12 13
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k k k

c c c
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c c c
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                                         ( 8) 

The small angle rotation matrix Ak
 may be written as  

[ ]A Ik δ= + Ψ , 

where 2

2

sin( ) (1 cos( ))
k k

t t
δ

∆ − ∆
Ψ = Ω + Ω

ω ω

ω ω
, 

( , , )x y z T

k k kω ω ω=ω  , 2 2 2( ) ( ) ( )x y z

k k kω ω ω= + +ω , 
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Then, 1Ck+  is transformed back to the Euler angles, 

(
1 1 1, ,k k kψ φ θ+ + + ). 

21
1

11

arctank

c

c
ψ +

 
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 
, [ ]1 31arcsink cφ + = − , 32

1

33
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k

c

c
θ +
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b. Measurement model 

The measurements available in real time for each sampling 

period are 1 , , ,( , , )x encoder y encoder z encoder T

k k k k
z υ υ ω= . ,x encoder

k
υ and  

,y encoder

k
υ  are the encoder measurements of the velocity along 

xb and yb axis, and 
,z encoder

k
ω  is the encoder measurement of 

the angular velocity around zb  axis. The Measurement 

equation is given by 1 1 1 1

k kz H X η= +  , where 1η  is a white 

measurement noise process vector with its covariance matrix 
1R . 
, 1

1

x encoder x

k kυ υ η= +  
, 1

2

y encoder y

k kυ υ η= +                                                                ( 10) 

, 1

3

z encoder z

k kω ω η= +  

where 1

i
η is the i-th element of vector 1η . 
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Fig. 3.  Structure of EKF for no-slip condition (z-1 denotes the unit 

delay operator)  
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c. State estimate and covariance update 

The EKF is used to correct the system prediction on the 

basis of the observations. The state prediction 1

1
ˆ
k k

X +  at time k 

is 1 1 1 1

1
ˆ ˆ( , )k kk k
X f X u+ =  and the covariance matrix associated 

with the prediction error is written as 
1 1

1 1

1 1 1 1 1

1
ˆ ˆ( ) ( ( ))f f T

k k kk k X X
P J X P J X Q+ = + .                                     (11) 

Here, 
1

1 ( )
f

X
J ⋅ is the Jacobian matrix of 1 ( )f ⋅ with respect to 

1ˆ
kX . The measurement prediction is 1 1 1

1 1|
ˆˆ

k k kz H X+ +=  and the 

final estimate is obtained as: 
1 1 1 1 1

1 1 1 11
ˆ ˆ ˆ[ ]k k k kk k
X X K z z+ + + ++= + −                                           (12) 

where the Kalman gain matrix is  1 1 1 1 1

1 11

T

k kk k
K P H S

−
+ ++= . The 

innovation covariance is 1 1 1 1 1

1 1

T

k k k
S H P H R+ += + . The co-

variance associated with the final state estimate 1

1
ˆ
kX +  is given 

by 1 1 1 1 1

1 1 1 11

T

k k k kk k
P P K S K+ + + ++= − . 

C. EKF for Slip Condition 

In slip condition, the measurements from encoders give 

false information. So, we designed a Kalman filter without 

using the erroneous encoder signals. The prediction model is 

constructed using a dynamic model, and the measurement 

model using the signals from the IMU (Inertial Measurement 

Unit). Fig. 4 shows the structure of EKF for slip condition, 

which represents the mode 2 of the IMM. The designed filter 

can be regarded as a simplified version of the Kalman filter of 

ref. [12]. 

 

a. Prediction model 

A state for slip condition is described by the following: 
2 ( , , , , , , , , , , , , , , , , )x x y y z y x ax ay x y z TX x y a a b b b b bω ω ωυ υ ψ φ θ ω ω ω=     (13) 

where axb and ayb  are x and y axis biases of the accelerometer 

and , ,and x y zb b bω ω ω  are drift-rate biases of the gyros along 

x,y, and z axis, respectively. The above biases are slowly 

drifting signals and 
wb n=ɺ  is used to model these where 

wn  is 

a Gaussian white-noise process [15,25]. The state equations 
2 2 2 2

1 1( )k kX f X ξ+ += +  are expressed by the following: 

21
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2

1 3

x x x

k k ka tυ υ ξ+ = + ∆ +  

2

1 4

x x

k ka a ξ+ = +                                                                    (14) 

2

1 5

y y y

k k ka tυ υ ξ+ = + ∆ +  

2

1 6

y y

k ka a ξ+ = +  

2

1 10

z z

k kω ω ξ+ = +  

2

1 11

y y

k kω ω ξ+ = +  

2

1 12

x x

k kω ω ξ+ = +  

2

1 13

ax ax

k kb b ξ+ = +  
2

1 14

ay ay

k kb b ξ+ = +  
2

1 15

x x

k kb bω ω ξ+ = +  
2

1 16

y y

k kb bω ω ξ+ = +  
2

1 17

z z

k kb bω ω ξ+ = +  

 

The Euler angles,
1 1 1( , , )k k kψ φ θ+ + + can be calculated as men-

tioned above. In contrast to (5), (14) doesn’t include the 

measurements from the inertial sensors as the system inputs. 

 

b. Measurement model 

The measurements from the IMU are utilized instead of 

encoder data. The measurement vector is 
2 , , , , , ,( , , , , , )x acc y acc x gyro y gyro z gyro y virtual T

k k k k k k k
z a a ω ω ω υ=                   ( 15) 

where ,y virtual

k
υ  is virtual measurement of  the velocity along the 

yb  axis and should be approximately zero because the robot 

can’t move along that direction. The measurement equation 
2 2 2 2( )k kz h X η= +  is given by  
, 2

1
sin( )x acc x ax

k k k
a a g bφ η= − + +  

, 2

2
cos( )sin( )y acc y ay

k k k
a a g bφ θ η= − + +  

, 2

3

x gyro x x

k k k
b
ωω ω η= + +                                                                 ( 16) 

, 2

4

y gyro y y

k k k
bωω ω η= + +  

, 2

5

z gyro z z

k k k
b
ωω ω η= + +  

, 2

6

y virtual y

k k
υ υ η= +  

where 2η  is a white measurement noise process vector with 

its covariance matrix 2R . 

 The state estimate and covariance update are the same as 

the ones for normal operation. They will not be repeated here. 

IV. A MULTIPLE MODEL APPROACH FOR SLIP DETECTION 

AND COMPENSATION 

The above Kalman filters should be switched according to 
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Fig. 4.  Structure of EKF for slip condition (z-1 denotes the unit delay 

operator) 

1144



 

 

 

the occurrence of slip. For this purpose, we employed the 

IMM that is a well known method to deal with multiple system 

models. In our use of the IMM, mode 1 of the IMM accounts 

for no-slip condition, and mode 2 does for slip condition. In 

the frame of the IMM, transition between two modes is 

automatic. 

Fig. 5 shows the architecture of the IMM algorithm used in 

our multiple model approach. In the figure, “Mode 1” is the 

EKF for no-slip condition and “Mode 2” is the EKF for slip 

condition. At each time k, a linear combination of the previous 

outputs (states and covariances, 0 0

1 1
ˆ ,j j

k kX P− − ) is the input into 

each mode. Also, the current measurement, 
kz  is the input 

into each model and residuals are computed along with cor-

responding likelihood functions, j

kΛ . Mode probabilities j

kµ  

are used as weights in a linear combination of current model 

outputs to form the desired blended state and covariance 

outputs. The following shows one cycle of the IMM algorithm 

[26]. 

Step1: Calculation of the mixing probabilities 

The probability that mode Mi was in effect at k-1 given that 

M
j is in effect at k conditioned on  1

1 1{ }kk i iZ z −
− =≡  is 

1 1 11 1

1
{ , }

i j i j i

k k k ij kk k

j

P M M Z p
c

µ µ− − −− − ≡ =                          (17) 

where the normalizing constants are 
2

1

1

i

j ij k

i

c p µ −
=

=∑  and 

mode transition probability 1{ },  , 1 or 2j i

ij k kp P M M i j−≡ = . 

Step2: Interaction (Mixing) 

Starting with 1
ˆ i
kX − , one computes the mixed initial condi-

tion for the filter matched to j

kM  as 

2
0

1 1 1 1
1

ˆ ˆ i jj i

k k k k
i

X X µ− − − −
=

=∑                                                        (18) 

The covariance corresponding to the above is 

{ }2
0 0 0

1 1 1 1 1 11 1
1

ˆ ˆ ˆ ˆ
T

i jj i i j i j

k k k k k kk k
i

P P X X X Xµ− − − − − −− −
=

   = + − ⋅ −   ∑     (19) 

Step3: mode-matched filtering 

The estimate 0

1
ˆ j

kX − and covariance 0

1

j

kP − are used as input to 

the filter matched to j

kM , which uses 
kz  to yield ˆ j

kX and 

covariance j

kP . The likelihood functions corresponding to the 

two modes are as follows: 

1
ˆ| , ; ,j j j j

k k k k k k kp z M Z N z z S−
   Λ ≡ =                               (20) 

where ( )N ⋅  denotes the normal pdf with argument 
kz , mean 

j

kẑ , and variance j

kS . 

Step4: Mode probability update 

1
{ }j j j

k k k k jP M Z c
c

µ ≡ = Λ ⋅                                                (21) 

where the normalization constant is 
2

1

j

k j

j

c c
=

= Λ ⋅∑  

Step 5: Estimate and covariance combination 

Combination of the model-conditioned estimates and co-

variances is done according to the mixture equations. 

{ }

2

1

2

1

ˆ ˆ

ˆ ˆ ˆ ˆ

j j

k k k

j

T
j j j j

k k k k k k k

j

X X

P P X X X X

µ

µ

=

=

=

   = + − ⋅ −   

∑

∑
                      (22) 

V. EXPERIMENTAL RESULTS 

The onboard sensory system includes two incremental 

encoders measuring the rotation of each motor, and an IMU 

that provides measures of the robot linear accelerations and 

angular rates. Fig. 6 shows the cleaning robot and cus-

tom-made IMU board. The IMU board has one yaw gyro 

(XV-3500, EPSON corporation), one roll-pitch gyro 

(IDG-300, Invensense, Inc.), one 3-axis accelerometer 

(KXPA4, Kionix, Inc.), and a microprocessor. The yaw gyro 
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Fig. 7. Experimental environment setup 
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Fig. 6. Cleaning robot and IMU board 
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Fig. 5.  Structure of the IMM with two modes 
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was calibrated on the self-made rate table to compensate for 

the scale factor nonlinearity. This calibration procedure is 

explained in [15] in more detail. The other sensors are used 

without calibration. The IMU board costs less than $20 to be 

cheap enough for cleaning robot products. 

To verify the overall effectiveness of the proposed method, 

we performed some experiments on the irregular floor. Fig. 7 

shows an experimental setup, which has a doorsill, rugs, and 

the base of a fan. The noise parameters of inertial sensors in 

the EKFs are experimentally determined and the other pa-

rameters are empirically determined. The mode transition 

probability of equation (17) is set 11 0.99p = , 12 0.01p = , 

21 0.005p = , and 22 0.995p = . The robot starts to travel at 

position (0,0). The ground truth trajectory was measured by a 

motion tracker system (Hawk digital System, Motion Analysis, 

Inc.) and is shown in Fig. 8 with the label “Ground truth”. In 

the figure, the label “Encoder” denotes the trajectory gener-

ated by only odometry. The label “Encoder+Gyro” represents 

the trajectory using a method presented by [15], where indi-

rect Kalman filter fused the data from the encoders and a yaw 

gyro to calculate the heading angle. The trajectory represented 

by the label “IMM” shows a much less position error than that 

of the trajectory with the label “Encoder+Gyro”, because it 

can compensate for the longitudinal distance error caused by 

slip. Both of the trajectory label with “Encoder+Gyro” and 

“IMM” show small errors in the heading. The trajectory la-

beled with “Slip position” shows the location where the slip 

occurred. 

Fig. 9 shows the velocity profile and the mode 2 probability 

when the robot moves on the experimental setup. In the in-

terval of “Stop”, since the robot doesn’t move, the biases of 

the gyros were reset the mean values of current gyro outputs to 

compensate for the bias drift. And mode 1 and mode 2 

probability are set 0.5 because the stop mode doesn’t belong 

either of mode 1 and mode 2. In the Fig. 9 (a), “IMM” has 

better tracking performance than “Encoder” in the presence of 

slip.  Fig. 9 (b) shows the mode 2 probability, where it is near 

zero under no-slip condition and it approaches one when the 

slip occurs. It should be noted that mode 2 probability indi-

cates the possibility of slip occurrence and can be used as a 

slip detection index. 

We performed 6 sets of experiments on the irregular floor 

changing the location of obstacles. Table I summarizes the 

experimental results. The final position errors and yaw errors 

were recorded after the robot traversed for 80~120 seconds. 

The position error is the Euclidean distance of x and y direc-

tion errors and the yaw error is the absolute value of error 

between the ground truth and the estimated value. The posi-
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Fig. 9.  Velocity profile and mode2 probability 
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Fig. 8.  Position trajectory after traveling for 80 seconds on the ir-

regular floor  

TABLE I 

 EXPERIMENTAL RESULTS [UNIT: CM,DEG] 

Encoder Encoder+Gyro IMM 
Trial Position  

Error 

Yaw 

Error 

Position  

Error 

Yaw 

Error 

Position  

Error 

Yaw 

Error 

1 631.26 88.79 153.83 1.13 20.56 1.11 

2 51.79 7.62 53.37 0.12 6.25 0.12 

3 219.87 115.52 48.78 0.07 13.31 0.80 

4 156.50 117.60 19.73 -0.12 6.01 0.53 

5 135.92 26.75 90.24 1.48 27.16 1.52 

6 154.37 19.91 110.40 1.25 1.34 1.09 
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tion errors of the IMM are much smaller than those of “En-

coder+Gyro”. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented a novel method for 

wheel-slip detection and compensation for cleaning robots to 

improve the dead reckoning performance. Dead reckoning is 

the key to simultaneous localization and map-building algo-

rithms, because they have a prediction step to estimate the 

position of the robot resorting to dead reckoning. We designed 

a new multi model approach using two Kalman filters ac-

counting for no-slip and slip condition. For this, an IMM 

structure was employed to switch two Kalman filters auto-

matically according to the probability of the slip occurrence. 

In the IMM structure, mode 2 (slip mode) probability was 

used as a slip index to detect the slip. Experimental results 

were presented to show that our approach dramatically re-

duced the position error of the robot traveling on the floor with 

slip. As a future work, we will extend our approach by adding 

another “Stop” mode to correct the biases of inertial sensors 

more accurately when the robot stops. 
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