No.	Name	Application Sample	Circuit	Output	Remarks	Bridge Box DB-120A/350A
1	1-active-gage 2-wire system Number of gages: 1	Uniaxial stress (uniform tension/compression)	Rg E	$\mathcal{C}_{o} = \frac{E}{4} K_{s} \cdot \varepsilon_{o}$ Ks: Gage factor ε_{o} : Strain <i>E</i> : Bridge voltage <i>Co</i> : Output voltage <i>Rg</i> : Gage resistance <i>R</i> : Fixed resistance	Suitable for use under environment of less ambient temerature changes; no temperature compensation. x1 output	Rg
2	1-active-gage 3-wire system Number of gages: 1	Uniaxial stress (uniform tension/compression)	Rg Rg C E C	$e_o = \frac{E}{4} K_s \cdot \varepsilon_o$	No temperature compensation; thermal effect of leadwires cancelled. x1 output	Rg
З	Dual 1-active-gage 2-wire system in series (to cancel bending strain) Number of gages: 2	Bending Rg1 Rg2 Uniaxial stress (uniform tension/compression)	Rg_1 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_2 Rg_1 Rg_2 Rg_2 Rg_1 Rg_2	$\mathcal{C}_{0} = \frac{E}{4} K_{S} \cdot \varepsilon_{0}$ $Rg_{1} \dots \text{Strain: } \varepsilon_{1}$ $Rg_{2} \dots \text{Strain: } \varepsilon_{2}$ $\varepsilon_{0} = \frac{\varepsilon_{1} + \varepsilon_{2}}{2}$ $R: \text{ Fixed resistance}$ $R = Rg_{1} + Rg_{2}$	No temperature compensation; bending strain cancelled. x1 output	
4	Dual 1-active-gage 3-wire system in series (to cancel bending strain) Number of gages: 2	Bending Rg1 Rg2 Uniaxial stress (uniform tension/compression)	R_{g_1} R_{g_2} R_{g_2} R_{g_2} R_{g_2} R_{g_2} R_{g_2} R_{g_2}	$c_{o} = \frac{E}{4} K_{S} \cdot \varepsilon_{o}$ $Rg_{1} \dots \text{Strain: } \varepsilon_{1}$ $Rg_{2} \dots \text{Strain: } \varepsilon_{2}$ $\varepsilon_{o} = \frac{\varepsilon_{1} + \varepsilon_{2}}{2}$ $R: \text{ Fixed resistance}$ $R = Rg_{1} + Rg_{2}$	No temperature compensation; bending strain cancelled; thermal effect of leadwires cancelled. x1 output	
5	Active-dummy 2-gage system Number of gages: 2	Active gage Rg_1 Uniaxial stress (uniform tension/compression) Dummy gage Rg_2	Rgi Rg2	$\mathcal{C}_{o} = \frac{E}{4} K_{S} \cdot \varepsilon_{o}$ Ks: Gage factor ε_{o} : Strain E: Bridge voltage \mathcal{C}_{o} : Output voltage Rg_{1} : Strain: ε_{o} R: Fixed resistance Rg_{2} Strain: 0	Temperature compensation; thermal effect of leadwires cancelled. x1 output	
6	Orthogonal 2-active-gage system Number of gages: 2	Uniaxial stress (uniform tension/compression)	Rg ₁ Rg ₁ Rg ₂ E	$e_{o} = \frac{(1+\nu)E}{4} K_{s} \cdot \varepsilon_{o}$ ν : Poisson's ratio Rg_{1}, Rg_{2} : Gage resistance Rg_{1}, \dots Strain: ε_{o} Rg_{2}, \dots Strain: $-\nu\varepsilon_{o}$ R: Fixed resistance	Temperature compensation; thermal effect of leadwires cancelled. x(1+v) output	
7	2-active-gage system (for bending strain measurement) Number of gages: 2	Rg1 Rg2 Bending stress		$\mathcal{C}_{o} = \frac{E}{2} \operatorname{K}_{5} \cdot \mathcal{E}_{o}$ $Rg_{1} \dots \text{Strain: } \mathcal{E}_{o}$ $Rg_{2} \dots \text{Strain: } -\mathcal{E}_{o}$ $R: \text{Fixed resistance}$	Temperature compensation; thermal effect of leadwires cancelled; compressive/ tensile strain cancelled. x2 output	
8	Opposite side 2-active-gage 2-wire system Number of gages: 2	$\begin{array}{c} & & Rg_1 \\ \hline Rg_2 \\ \hline \\ & \\ \\ & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	R_{r}	$e_{o} = \frac{E}{2} K_{s} \cdot \varepsilon_{o}$ $Rg_{1} \dots \text{ Strain: } \varepsilon_{o}$ $Rg_{2} \dots \text{ Strain: } \varepsilon_{o}$ $R: \text{ Fixed resistance}$	No temperature compensation; bending strain cancelled by bonding to the front and rear. x2 output	

How to Form Strain-gage Bridges

No.	Name	Application Sample	Circuit	Output	Remarks	Bridge Box DB-120A/350A	
9	Opposite side 2-active-gage 3-wire system Number of gages: 2	$\frac{Rg_1}{Rg_2}$	Rgi E	$e_o = \frac{E}{2} K_s \cdot \epsilon_o$ $Rg_1 \dots \text{ Strain: } \epsilon_o$ $Rg_2 \dots \text{ Strain: } \epsilon_o$ $R: \text{ Fixed resistance}$	No temperature compensation; thermal effect of leadwires cancelled; bending strain cancelled by bonding to the front and rear. x2 output		
10	4-active-gage system (for bending strain measurement) Number of gages: 4	Rg ₃ Rg ₁ Rg ₂ Rg ₂ Bending stress	Rga Rga Rga Rga Rga E	$c_o = K_{S'} \varepsilon_o \cdot E$ $Rg_{I_1} Rg_{3_1} \dots$ Bending strain: ε_o $Rg_{2_1} Rg_{4_1} \dots$ Bending strain: $-\varepsilon_o$	Temperature compensation; thermal effect of leadwires cancelled; compressive/ tensile strain cancelled. x4 output		
11	Orthogonal 4-active-gage system Number of gages: 4	Rg1 Rg2 Rg1 Rg2 Rg3 Rg4	Rg4 Rg7 Co Rg7 Co	$e_{o} = \frac{(1 + \nu)E}{2} \text{K}_{s} \cdot \varepsilon_{o}$ $\nu: \text{Poisson's ratio}$ $Rg_{1}, Rg_{3} \dots$ $\text{Strain: } \varepsilon_{o}$ $Rg_{2}, Rg_{4} \dots$ $\text{Strain: } -v\varepsilon_{o}$	Temperature compensation; thermal effect of leadwires cancelled. x2(1+v) output		
12	Active-dummy 4-gage system Number of gages: 4	Active gages R_{g_1} R_{g_2} Uniaxial stress (uniform tension/compression) Dummy R_{g_2} R_{g_4}	Rg4 Rg4 Rg1 Rg2 eo	$c_o = \frac{E}{2} K_s \cdot \varepsilon_o$ $Rg_1, Rg_3 \dots$ Strain: ε_o $Rg_2, Rg_4 \dots$ Strain: 0	Temperature compensation; thermal effect of leadwires cancelled; bending strain cancelled by bonding to the front and rear. x2 output		
13	2-active-gage system (for bending strain measurement) Number of gages: 2		Rgi Rg2	$c_{o} = \frac{E}{2} \text{ K}_{S} \cdot \varepsilon_{o}$ $Rg_{1} \dots \dots$ Bending strain: ε_{o} $Rg_{2} \dots \dots$ Bending strain: $-\varepsilon_{o}$ R : Fixed resistance	Temperature compensation; thermal effect of leadwires cancelled. x2 output		
14	4-active-gage system (for bending strain measurement) Number of gages: 4	Rg1 Rg2 Rg2 Rg3	Rga Rga Rga Rga Rga Rga Co	$\mathcal{C}_{o} = K_{S} \cdot \mathcal{E}_{o} \cdot E$ Rg_{1}, Rg_{3}, \dots Bending strain: ε_{o} Rg_{2}, Rg_{4}, \dots Bending strain: $-\varepsilon_{o}$	Temperature compensation; thermal effect of leadwires cancelled. x4 output		
15	4-active-1-gage system (for mean strain measurement) Number of gages: 4	$\begin{array}{c} \begin{array}{c} Rg_{1} & Rg_{4} \\ \hline \\ Rg_{1} & Rg_{4} \\ \hline \\ Rg_{2} & Rg_{2} \\ \hline \\ Rg_{3} & Rg_{2} \\ Rg_{2} & Rg_{4} \\ Rg_{2} & Rg_{4} \\ Rg_{3} \end{array}$	Rgy Rgy Rgy Rgy E	$c_{o} = \frac{E}{2} K_{s} \cdot \varepsilon_{o}$ $\varepsilon_{o} = \frac{\varepsilon_{1} + \varepsilon_{2} + \varepsilon_{3} + \varepsilon_{4}}{4}$ $R: \text{ Fixed resistance}$ $Rg = R$ $R = Rg_{1} = Rg_{2} = Rg_{3} = Rg_{4}$	No temperature compensation; mean strain. x1 output		
• Relation between strain and voltage The output of a strain-gage bridge is expressed as a strain quantity (μ) or an output voltage (mV/V or μ V/V) against the bridge voltage. The strain quantity and the output voltage have the following relation: E κ							

 $e_0 = \frac{E}{4} K_s \cdot \varepsilon_0$

bridge output voltage. e.g. $3000\mu\epsilon \rightarrow 1500\mu V/V = 1.5mV/V$