
SUMMARY

This is a progress report on an "open" CAN bus wheelchair controller system that I've been
working on.  Luckily I am now retired so I am able to devote a lot of uninterrupted time to a
project that is much more involved than anything I have done before, with the exception of my
daughter Rachele's head switch and gaze operated multilingual communications/computer control
system which only reached its current state after years of work.

Having been involved with wheelchair design for over 20 years, I am well aware of the safety
issues involved; after all, a wheelchair user can not "bail out" if something goes awry.  Indeed,
creating a "bullet proof" system is a major part of the work involved.  For a geneticist working
on a project that really needs the skills of an ME, an EE and a programmer this is decidedly non-
trivial.

One of the satisfying, and at the same time worrisome, aspects of this is that I learn something
new just about every day.  For example, common practice is to protect a semiconductor switching
circuit from relay coil kickback by putting a reverse-biased diode across the coil.  This indeed will
protect the driver, and it is a good way to do things when dealing with signal-level relays (or AC
relays in general), it is, however, a relay-killer if used on high current DC relays.  I only
discovered this when a footnote on a spec sheet led me to these Tyco application notes.  If you
are dealing with controlling more than mA currents, they are a must read.

http://relays.te.com/appnotes/app_pdfs/13c3311.pdf

http://relays.te.com/appnotes/app_pdfs/13c3264.pdf

So what's worrisome about learning all these new things?  What's worrisome is the question: What
other equally critical factors exist that I should know about that, because of my ignorance, I don't
even realize that I should study?

In the end, I expect to need a lot of testing at high power in a high noise environment before the
design is really "final".  And that's a problem for me: pushing everything to its limits requires
equipment, money and time I don't (and won't ever) have, and I've yet to decide what level of risk
I'm willing to tolerate in a system that's not been "tested-to-destruction".  Hence, in both the
hardware and software I'm trying to use a "belt-and-suspenders", fail-safe and safe-fail, approach
and that's why the more people who are willing to invest some time in double-checking and
questioning what I've done the more comfortable I will feel.

At this point, I have a three-node net running at 1M bits per second without dropouts (compared
to the usual WC controller rate of 100k bps or so).  Transmission rate will be set lower on the
chair after testing at 1M to give a nice safety margin.  During testing, a PC will also be connected
to the motor controller to start its script each time it's powered up.  Once I'm sure that the script
doesn't have any bad bugs, it can be set to autorun on startup.  The PC will have NO role in actual
operation - no PC operating system is to be trusted EVER with driving a wheelchair!

This will be a very lengthy message.  If you'd prefer to read it at leisure, I've attached a pdf
version.  There is also a zip file of the hardware (WC CAN circuits.zip) with schematic and pcb
designs as pdf and DesignSpark files, and a zip file of the program files (WC CAN programs.zip).

http://relays.te.com/appnotes/app_pdfs/13c3311.pdf
http://relays.te.com/appnotes/app_pdfs/13c3311.pdf


PROJECT DESCRIPTION: HARDWARE
CAN nodes:

The system will have four CAN bus nodes, though more could be added if other functionality is
needed:

(1) the MOTOR CONTROLLER node that handles the high current needs of the motors and
some medium-current digital outputs.  I am designing around the characteristics of the Roboteq
HDC2450, but relatively little work would be needed to adapt this to other controllers.  Some
external hardware is also needed: high current safety disconnect relay, SPDT reed relay for power
to the Roboteq's microprocessor, pre-charge resistor, regeneration bypass diode (in case the
safety relay opens), voltage clamping on the motors (if not built in to the motors themselves),
relays or semiconductor H-bridges for actuators etc.

(2) the MASTER node that collects information from an analog joystick and/or switches, and
does the arithmetic and logic to turn that into CAN messages to the Roboteq for controlling the
motors, brakes etc.  Because the Roboteq does not treat CAN the same way as it treats analog,
pulse or serial input, all of the calculations for scaling the joystick, setting dead band,
implementing a speed pot (if desired), applying different degrees of exponential curving and so
on must be done here.  This is actually similar to Dynamic DX/DX2 systems in which the power
module only has motor programming, and the master computer is in the remote.  Of all the driving
calculations needed, only mixing and motor compensation are handled in the Roboteq node. 
MASTER also traps errors, collects information from the Roboteq and Aux nodes, and sends this
information on to the DISPLAY node.  A toggle switch is used to go between joystick and switch
input, and momentary contact switches are read to give forward, reverse, left, right, mode
(driving, seat, lights), power On (or Wake)/Off, and STOP.

(3) the AUX node.  Although the Roboteq has a number of 1A digital outputs, there are not
actually enough to do everything one might want to do: separate left and right brakes, seat
actuators (1, 2 or 3), lights.  Moreover, I don't want to have separate On/Off switches for
different modules so we need some way to control power to the Roboteq via the CAN bus.  These
functions will be handled by AUX node.  AUX can also handle a shock sensor &/or other stability
sensor (such as I now have on Rachi's chair), and speed slow-down &/or inhibit sensors on the
seat actuators.  (This is where one could add gyros, compass, even a full inertial navigation system
if one wanted too - I don't, but a Nano has enough guts for all of this.)

(4) the DISPLAY node.  This node receives messages from MASTER to display them on a small
TFT screen and to log them on a micro SD card.  Graphics will show which way to move the
joystick for different seat movements or light settings, an indicator of whether in joystick or
switch-driving mode, present voltage and Amp Hours consumed since last charge.



MASTER, AUX and DISPLAY each contain: an Arduino Nano (or open-hardware copy)
microprocessor, a CAN controller/transceiver (Microchip 2151 + Microchip 2551) board with
the same footprint as the Nano plus two extra rows of headers to make external connections easy,
and a 500 mA DC-DC converter to provide 5V for the electronics.  The DC-DC board has the
same footprint and headers as the CAN board, so all three can be stacked or mounted separately
to make best use of space.  The Nano board is 18 mm X 43 mm (0.7" X 1.7") , and the other two
are 23 mm X 43 mm (0.9" X 1.7").  There's a decoupling capacitor on top of each chip, a
tantalum filter capacitor on each 5V power input, and an aluminum electrolytic on the 24V input
to the DC-DC board.

Although the Nano is quite small, it is a full development board and includes a USB-serial chip
and mini-B USB connector for programming it (the USB-serial chip goes to sleep if the USB is
not connected).  For the moment, for the MOTOR CONTROLLER node I have programmed a
RoboteqEmulator using the same Nano+CAN board hardware, but eventually that program will
have to be translated from Arduino C++ to Roboteq MicroBasic.

Programming of MASTER and RoboteqEmulator nodes is essentially complete and a first-draft
of AUX is running, but I've yet to begin on DISPLAY (partly because the screen I want to use
is on seemingly-perpetual back order; I guess it's pretty popular).

"Green" CAN boards have been made and I have four nodes working with these.  One trace is
different in the "final" design, and I screwed up the silk-screening on the green boards, but if any
of you are interested in trying things out, I have 12 bare boards to give away: you need at least
2 to have a working bus, 3 to run all three current nodes.  So six of you can each have a pair, or
four of you can have 3.  Send me an e-mail if you want some.  You will have to mount SMD



components on both sides, open one trace and add one wire jumper.  I do my SMD soldering with
an ordinary toaster oven and a watch with sweep-second hand, and position the components with
very fine tweezers and a stereoscope borrowed from the University of Siena - though a decent
magnifying glass would also work.

The design of the DC-DC converter board has been finalized, but so far all I have is a hand-made
prototype.  The converter used with MASTER is on/off controlled from the Nano, while the other
two will be always on.  The board is the same, but many components are simply left out on the
2 simpler boards.  One momentary-contact push button serves for ON, OFF and WAKE FROM
SLEEP.  When MASTER is turned off, it first sets all Roboteq outputs to zero, turns off power
to the Roboteq (via a message to AUX), then puts all of the CAN boards into sleep mode, puts
the AUX and DISPLAY processors into a PWR_DOWN sleep mode, then is finally itself
powered down.  Turning ON is the reverse.  Inactivity for a user-set time causes everything to
go to sleep (but not to power down) to save power, but gives a quick (no more than a few
milliseconds) wake-up response with the same pushbutton.

Rachi's system will have one additional box, but it's not a CAN node.  It's a multiplexer to allow
the same head and foot operated switches to control the chair and control her computer.  On her
present chair, this is, for historical reasons only, a 12 V through-hole component board, but the
new one will be 5V SMD.  Connected by DB9 to MASTER, it will receive 5V from the
MASTER node OR'ed with 5V from a PC USB port so that it will power down when neither the
chair nor computer are being used.

I have my three nodes communicating very nicely at 1M bits-per-second (chair systems are
generally much, much slower), but some changes might well be needed when there's all the
"noise" of a real installation.  For the most part, I'd prefer to suppress noise at the source rather
than try to filter it out, but some filtering of CAN-H and CAN-L might be needed and there's no
room for that on the boards as designed.  I am trying to avoid that, however, as filtering the CAN
lines can cause bit timing problems worse than the problems caused by noise - Dynamic never got
their DX-5SW module to work reliably for this reason and pulled it from the market.  One thing
I might have to do is add a couple resistors and a connection to the 2.5V Vref output on the
MCP2551 to avoid common mode voltage drift, but, again, I'd rather try first to avoid ground
loops (which would be the cause of the drift) rather than hide the effect.

Cabling and connections:

This has been a hair puller, and being almost bald that's unfortunate.  Dynamic's proprietary cables
have 2 heavy 24V wires that can handle as much as 12 Amps over short distances, and a small,
shielded twisted pair for CAN.  I have not been able to find a stock cable of that type, so would
buy cables from Dynamic were it not for the fact that their jacks are OEM so can't be bought. 
CAN bus specifies 120 ohm impedance twisted pair with 120 ohm termination resistors in the end
nodes, but one can get away with large deviations from this standard, as Dynamic and others do. 
For example, Dynamic allows, indeed pushes, a "star" rather than "daisy-chain" configuration of
the bus (to limit voltage drop on the 24V wires) so there can't be termination resistors at the two
ends because there aren't two ends, nor can they use distributed termination among all nodes
because any two wheelchairs may have different numbers of modules.  They get away with this
because impedance mismatch doesn't much matter on a short, slow speed network (though I
suspect it contributed to the timing problems on the DX-5SW).  For now, my compromise looks
like this:



(1) Daisy-chain bus with 120 ohm terminators at the ends, separate high-amp wiring to the
Roboteq and any other modules that need high power, and only enough 24V capacity on the CAN
cables to power the electronics.

(2) The best USB-2 cables available (e.g. Belkin pro or gold) have 20ga power wires, a 25ga
twisted signal pair, inside foil shielding with drain wire for the signal pair and outer braid shielding
of the cable.  USB impedance is 90 ohms instead of CAN's 120, but the bus is very short (well
under a small fraction of a wavelength; CAN is good to 1 km with proper impedance match and
we're talking about a few meters at most - BTW, USB2, because it is much faster, is good only
to 5M) so I don't think this will be a problem.

(3) 5 pin XLR latching connectors, insulated from ground but with continuity via the shells for
the outer braid and a separate pin for the inner shield.  Inner foil grounded at only one end (to
avoid loop currents) and the same for the braid, though I might want to connect that to ground
via a capacitor to avoid any DC offset, losing some shielding effect.  Using 5 pin connectors also
makes sure that a WC charger plug doesn't get plugged in.  With a 7.5 A/pin rating, 5 pin XLR
is many-fold more than adequate for powering the electronics.

I have one misgiving about using XLR plugs rather than the more-fragile and non-locking USB
connectors.  USB connectors have longer contacts for the power lines than the signal lines - it's
part of what makes them "hot swap".  This ensures that voltage can not be put on a FET gate
before it is powered up; doing that can destroy the gate.  As that's a nice protection, I may end
up with USB-A plugs anyway, though I'd still have to make up my own cables as the 20/25 ga.
cables come in a limited selection of lengths, USB-A male to USB-A male is not USB spec so not
available in these cables (but would help keep someone from plugging the wrong stuff in), and
cables with various right angle plugs (which would keep them from hitting things) that I've found,
though good quality, are 25/28 gauge.  I've made up right angle USB cables for Rachi's computer
(after cracking a mother board when a sticking-out connector got clobbered), so know I can do
it, but it's a tedious task and the results aren't "pretty".

SOFTWARE

CAN protocol:

A standard CAN frame consists of an identifier (11 bits) and up to 8 bytes of data.  The CAN
standard includes a number of features, both in how things are coded and in the physical layer
(CRC check, bit-stuffing timing check, repeated transmission until receipt is acknowledged) to
make sure that messages arrive intact.  Because a wheelchair is a life-critical device for a user who
may not be able to "bail out" if things go awry, my programming adds a couple further layers of
protection.  My messages contain at most 4 bytes of data and the other space is used for the bit-
wise complements of these.  A receiving node first does the built-in CAN checks and filters for
proper ID before putting it in a message buffer (the MC 2151 has two buffers with separate
masking/filtering).  My (AUX, DISPLAY or Roboteq script) program then compares the data and
their complements to make sure that the information is correct and then sends a confirmation
message back to MASTER.  If the original message was an information request (e.g. battery
amps), the confirmation is the requested information itself.  If the original message was a control
or configuration command (such as a motor command), the confirmation message is the same data
(and complements thereof) with the ID changed to show that it is the confirmation.  MASTER



again does the data/complement check, traps any errors and does not proceed on unless a proper
confirmation is received.

For my nodes, the 11 bit ID is divided into three fields: 2 bits to say whether this is a command,
information or configuration message; 6 bits for the name of the message using the same names
as Roboteq uses in their Constants.h file with a few additions for functions the Roboteq doesn't
have; and 3 bits that say from whom the message is coming or to whom it is going.  Each of my
nodes filters incoming messages to accept only the ones intended for that node.

The Roboteq, however, is a special case.  It can be set to either (1) accept all messages, or (2)
accept messages from only one node.  Case (2) would be OK but for the fact that Roboteq has
tied up 7 (of the 11) ID bit to specify the one node to listen to which means that my division of
the ID into fields wouldn't work.  Hence, the Roboteq will be set to accept all messages and its
script will then have to discard the irrelevant ones.  Workable, but slower than proper masking
and filtering.  I've tested this by setting AUX to accept all messages then checking whether it
responds properly to its intended messages (YES) or whether the ack from AUX interferes with
RoboteqEmulator seeing, and confirming, its intended messages (NO, they get through just fine). 
OK, I'm all set, I can just let the Roboteq accept everything and ignore their (inflexible) ID
filtering.  (This is the sort of thing that would drive one nuts with USB or other server-client serial
scheme.  CAN is great, thank you Bosch!)

The MASTER node program:

User-changeable settings --
A series of user settings are at the top of the MASTER program.  These basically correspond to
the non-motor programming settings found in any wheelchair controller.  It's just a list, without
any fancy graphical user interface, but I actually like that better.  I'd appreciate it if you'd read
through these to see if their meaning is reasonably clear, and to see if I've left out something.  Do
notice that there are NO acceleration settings - no rubber-band or ocean liner driving is available
here.  The Roboteq has it's own Roborun software for motor configuration, and those settings can
provide mushy behavior if really, really wanted, as well as providing such basic functions as Amp
and temperature limits, etc.

Startup --
The startup routine includes setting various internal parameters, pin identifications etc.,
configuring the CAN controllers, holding the DC-DC converter ON after the momentary push-
button starts it up and so on.  That's all just ordinary housekeeping.  More importantly, it includes
a number of safety checks.  It makes sure the high-current contactor's coil is neither shorted nor
open and that its contacts are not fused.  It checks that the brake coils are neither open nor
shorted.  It makes sure that all Roboteq outputs are in "neutral" and makes sure that the Joystick
is not out-of-neutral.  The OON check is also run later whenever the controller is toggled between
joystick and switch-controlled driving.

The startup section of the MASTER node program also manages use of EEPROM for storing
data that we don't want to disappear between sessions.  For now that's just Amp Hours used and
last mode (driving, seating or lights) in use.  Because EEPROM has a finite write-cycle life, these
data are stored in ring memories to spread the writes over 40 addresses for each variable. 
Lifetime of the EEPROM with these rings is 25 years if current gets measured and stored (or
mode gets changed) 220 times a day.



Running --
The joystick is read on two analog inputs that check for out-of-range conditions (a failed joystick
or broken wire), a speed pot is read on another analog input, and switches are read on a series of
digital inputs.  Each analog input is read multiple times to average out noise and jitter, and the
number of reads is a parameter that can be adjusted for more or less-steady joystick hands.  Raw
joystick input is scaled in accord with user set parameters for dead band and exponential curving
(4 integer arithmetic approximations from none to strong), the data and bitwise complements are
put into a CAN frame, sent and checked for arrival of a confirmation message.  If the joystick
stays at 0, the message is not repeated, but if it is held at a steady non-0 value messages are sent
once every 900 msec to satisfy the Roboteq's watchdog timer.  If the joystick is not rock steady,
messages are sent as fast as the loop can cycle (every 2 milliseconds, worst case even with CAN
rate reduced to 125k bps).  I don't know if Roboteq's processor is as fast, but it probably will be
OK as the majority of the 2 msec is for analog reads, averaging and calculation, rather than for
CAN messaging.

The Joystick-switch toggle and the mode switch --
To allow switch driving in different situations (e.g. tight spaces indoors, outdoors such as
sidewalks, and wide open spaces), when switch-driving the mode switch cycles through 3 user-
defined speed profiles.  To ensure that there are no surprises, any time the joystick-switch toggle
goes to "switch", the driving profile goes to its slowest setting, and when toggling in either
direction, we check for Throttle and Steering neutral before executing the change.  We wouldn't
want the chair to go off on its own because a switch was kept pressed while changing to joystick,
nor would we want the chair to fly off because the someone was still holding on to the joystick
while changing to switch driving.

In switch-driving mode, the switches are used to set discrete throttle and turn values.  If using
lights or seat actuators via the joystick, the joystick values are converted to discrete light or
actuator commands.

Setting brakes and power management --
If the joystick goes to 0, current flow is checked and when the motors stop moving the brakes are
set (there's a parameter for setting the delay for this - so that the chair stops moving first, but
doesn't drift).  If the brakes happen to be set when movement is later called for, the brakes are
first released, current flow is checked to make sure the brake coils are OK, then the motion
command message gets processed.  If the brakes fail to open and the chair tries to move, the chair
will probably move (sluggishly) but the motors would overheat and could be damaged, hence the
check each time that the coils are working.

If current flow stays at minimum (i.e. just brakes) for a while, the high-current contactor is
opened.  If the contactor is open when we later send a motion, seat or lights action, the contactor
is first commanded to close.  There is no need to check for proper operation as a contacter coil
failure here just means that the chair won't do anything.

If MASTER stays completely inactive for an extended time (10 seconds for testing, but multiple
minutes to infinite in actual use), the modules go to sleep.  If MASTER is actually turned off (i.e.
DC power turned off), the other Nano nodes are put to deep sleep and the Roboteq is powered
down before power to MASTER is cut off.



Why have I fussed so much with power consumption?  Because I don't want the batteries drained
if the chair is sitting around doing nothing, even for a week or two.   A high-current contactor
relay draws quite a bit of current; the best I've found for this use draws 35 mA, but others may
draw as much as half an amp or more.  A Roboteq left on and doing nothing draws >100 mA. 
When awake, the Nano + CAN board may draw as much as 30 mA, but when asleep they drop
to microamps (with power LED disconnected).  Quiescent current of each DC-DC converter is
5 mA, but except for the Master which can be turned off, these have to be left on unless a separate
switched power line were run to each node.  Because, in normal operation, the contactor will
open only when current is minimal, it should last essentially forever (mechanical life for the one
I've chosen is 10^7 cycles), but even in emergency use, where it might be breaking a hefty current,
it should have a long life (rating is 5X10^4 operations at 300 Amps and 13.5 VDC; obviously less
at >=24 volts, but still more than we'll ever have to contend with.)  This is an automotive high
current relay and not a traditional contactor-in-a-can.  Those handle much more current, but have
a lifetime measured in the hundreds of operations and a coil current many-fold higher.

Aux and RoboteqEmulator node programs:

Both of these programs have the same basic structure: they poll continuously for incoming CAN
messages, parse the ID to find out whether intended for the Roboteq (which doesn't have a decent
mask/filter) and to extract the  message type and name that allow selecting among procedures that
set motor commands, digital output pins, or read some value.  They are much simpler than the
MASTER node's program (22 k bytes for MASTER; 9.4k for RoboteqEmulator, and 8.2k for
Aux.  The last of these, Aux, will grow, but about 1/3 of the memory use is for diagnostic stuff
and will eventually get removed.)  Polling rather than interrupts are used throughout because
Roboteq MicroBasic does not have any interrupt handling.

***************************************************************************
***************************************************************************

If you want to see the details of how these things have been done, I'm afraid you'll have to study
the schematics, pcbs and read through the code. I hope that at least some of you will.  This is my
first "deep" foray into embedded programming and I'm sure there are many improvements that
can be made.


