Using the Hardware Quadrature Encoder Channel on the DUE

schwingkopf:
just solved the problem.. the EDGPHA bit in the TC_BMR register controls whether the edges are detected on both PHA and PHB or just on PHA. I had this bit set to 0 before which according to the datasheet was the good choice.

("0: edges are detected on both PHA and PHB. 1: edges are detected on PHA only.")

BUT!! the description in the datasheet is WRONG!! its inverted!

so the code that works fine is the following:

const int quad_A = 2;

const int quad_B = 13;
const unsigned int mask_quad_A = digitalPinToBitMask(quad_A);
const unsigned int mask_quad_B = digitalPinToBitMask(quad_B);

void setup() {
    Serial.begin(115200); 
    delay(100);
   
    // activate peripheral functions for quad pins
    REG_PIOB_PDR = mask_quad_A;     // activate peripheral function (disables all PIO functionality)
    REG_PIOB_ABSR |= mask_quad_A;   // choose peripheral option B   
    REG_PIOB_PDR = mask_quad_B;     // activate peripheral function (disables all PIO functionality)
    REG_PIOB_ABSR |= mask_quad_B;   // choose peripheral option B
   
    // activate clock for TC0
    REG_PMC_PCER0 = (1<<27);
    // select XC0 as clock source and set capture mode
    REG_TC0_CMR0 = 5;
    // activate quadrature encoder and position measure mode, no filters
    REG_TC0_BMR = (1<<9)|(1<<8)|(1<<12);
    // enable the clock (CLKEN=1) and reset the counter (SWTRG=1)
    // SWTRG = 1 necessary to start the clock!!
    REG_TC0_CCR0 = 5;   
   
void loop() {
  Serial.println(REG_TC0_CV0,DEC);
  delay(500);
}

I tested the proposed code at up to 60 kHz, works great! But the index is not work at A7. Does anyone understand? My knowledge there is no longer enough.