EEPROM.h:L'ide compile ok mais message en rouge parmi les messages en blanc

Bonjour…
Mon problème est en compilant le code avec l’ide, il se compile bien sans s’arrêter , mais dans la fenêtre du statu il s’affiche un message dans deux struct de EEPROM.h. Ce message apparaît en rouge, je n’ai pu copier alors je l’ai taper.

Comme je suis sans expérience je ne comprend pas ce que ce message veux dire et encore plus loin de comment corriger l'erreur

Je demande votre aide , merci beaucoup à l’avance
Larod1

Note :j'ai ajouté le code et la biblio.

« In file incluse from c:\ … eeprom_read.ino :9 :0 :» Le nom du code qui ce compile, la ligne 9 = '#include .h>'

C:\ … EEPROM.h :43 :30 : warning Type qualifiers ignored on function return type [-Wignored-qualifiers]

Operator const unit8_t() const ( return **this; )
^
Et cet autre message :
C:\ … EEPROM.h :92 :26 : warning Type qualifiers ignored on function return type [-Wignored-qualifiers]

Operator const unit8_t() const ( return index; )
^

/*
  EEPROM.h - EEPROM library
  Original Copyright (c) 2006 David A. Mellis.  All right reserved.
  New version by Christopher Andrews 2015.

  
*/

#ifndef EEPROM_h
#define EEPROM_h

#include <inttypes.h>
#include <avr/eeprom.h>
#include <avr/io.h>

/***
    EERef class.
    
    This object references an EEPROM cell.
    Its purpose is to mimic a typical byte of RAM, however its storage is the EEPROM.
    This class has an overhead of two bytes, similar to storing a pointer to an EEPROM cell.
***/

struct EERef{

    EERef( const int index )
        : index( index )                 {}
    
    //Access/read members.
    uint8_t operator*() const            { return eeprom_read_byte( (uint8_t*) index ); }
    operator const uint8_t() const       { return **this; }
    
    //Assignment/write members.
    EERef &operator=( const EERef &ref ) { return *this = *ref; }
    EERef &operator=( uint8_t in )       { return eeprom_write_byte( (uint8_t*) index, in ), *this;  }
    EERef &operator +=( uint8_t in )     { return *this = **this + in; }
    EERef &operator -=( uint8_t in )     { return *this = **this - in; }
    EERef &operator *=( uint8_t in )     { return *this = **this * in; }
    EERef &operator /=( uint8_t in )     { return *this = **this / in; }
    EERef &operator ^=( uint8_t in )     { return *this = **this ^ in; }
    EERef &operator %=( uint8_t in )     { return *this = **this % in; }
    EERef &operator &=( uint8_t in )     { return *this = **this & in; }
    EERef &operator |=( uint8_t in )     { return *this = **this | in; }
    EERef &operator <<=( uint8_t in )    { return *this = **this << in; }
    EERef &operator >>=( uint8_t in )    { return *this = **this >> in; }
    
    EERef &update( uint8_t in )          { return  in != *this ? *this = in : *this; }
    
    /** Prefix increment/decrement **/
    EERef& operator++()                  { return *this += 1; }
    EERef& operator--()                  { return *this -= 1; }
    
    /** Postfix increment/decrement **/
    uint8_t operator++ (int){ 
        uint8_t ret = **this;
        return ++(*this), ret;
    }

    uint8_t operator-- (int){ 
        uint8_t ret = **this;
        return --(*this), ret;
    }
    
    int index; //Index of current EEPROM cell.
};

/***
    EEPtr class.
    
    This object is a bidirectional pointer to EEPROM cells represented by EERef objects.
    Just like a normal pointer type, this can be dereferenced and repositioned using 
    increment/decrement operators.
***/

struct EEPtr{

    EEPtr( const int index )
        : index( index )                {}
        
    operator const int() const          { return index; }
    EEPtr &operator=( int in )          { return index = in, *this; }
    
    //Iterator functionality.
    bool operator!=( const EEPtr &ptr ) { return index != ptr.index; }
    EERef operator*()                   { return index; }
    
    /** Prefix & Postfix increment/decrement **/
    EEPtr& operator++()                 { return ++index, *this; }
    EEPtr& operator--()                 { return --index, *this; }
    EEPtr operator++ (int)              { return index++; }
    EEPtr operator-- (int)              { return index--; }

    int index; //Index of current EEPROM cell.
};

/***
    EEPROMClass class.
    
    This object represents the entire EEPROM space.
    It wraps the functionality of EEPtr and EERef into a basic interface.
    This class is also 100% backwards compatible with earlier Arduino core releases.
***/

struct EEPROMClass{

    //Basic user access methods.
    EERef operator[]( const int idx )    { return idx; }
    uint8_t read( int idx )              { return EERef( idx ); }
    void write( int idx, uint8_t val )   { (EERef( idx )) = val; }
    void update( int idx, uint8_t val )  { EERef( idx ).update( val ); }
    
    //STL and C++11 iteration capability.
    EEPtr begin()                        { return 0x00; }
    EEPtr end()                          { return length(); } //Standards requires this to be the item after the last valid entry. The returned pointer is invalid.
    uint16_t length()                    { return E2END + 1; }
    
    //Functionality to 'get' and 'put' objects to and from EEPROM.
    template< typename T > T &get( int idx, T &t ){
        EEPtr e = idx;
        uint8_t *ptr = (uint8_t*) &t;
        for( int count = sizeof(T) ; count ; --count, ++e )  *ptr++ = *e;
        return t;
    }
    
    template< typename T > const T &put( int idx, const T &t ){
        EEPtr e = idx;
        const uint8_t *ptr = (const uint8_t*) &t;
        for( int count = sizeof(T) ; count ; --count, ++e )  (*e).update( *ptr++ );
        return t;
    }
};

static EEPROMClass EEPROM;
#endif

En compilant ce code que les messages arrivent a la ligne 9

/*
 * EEPROM Write
 *
 * Stores values read from analog input 0 into the EEPROM.
 * These values will stay in the EEPROM when the board is
 * turned off and may be retrieved later by another sketch.
 */

#include <EEPROM.h>

/** the current address in the EEPROM (i.e. which byte we're going to write to next) **/
int addr = 0;

void setup() {
  /** Empty setup. **/
}

void loop() {
  /***
    Need to divide by 4 because analog inputs range from
    0 to 1023 and each byte of the EEPROM can only hold a
    value from 0 to 255.
  ***/

  int val = analogRead(0) / 4;

  /***
    Write the value to the appropriate byte of the EEPROM.
    these values will remain there when the board is
    turned off.
  ***/

  EEPROM.write(addr, val);

  /***
    Advance to the next address, when at the end restart at the beginning.

    Larger AVR processors have larger EEPROM sizes, E.g:
    - Arduno Duemilanove: 512b EEPROM storage.
    - Arduino Uno:        1kb EEPROM storage.
    - Arduino Mega:       4kb EEPROM storage.

    Rather than hard-coding the length, you should use the pre-provided length function.
    This will make your code portable to all AVR processors.
  ***/
  addr = addr + 1;
  if (addr == EEPROM.length()) {
    addr = 0;
  }

  /***
    As the EEPROM sizes are powers of two, wrapping (preventing overflow) of an
    EEPROM address is also doable by a bitwise and of the length - 1.

    ++addr &= EEPROM.length() - 1;
  ***/


  delay(100);
}