Eclairage à led de vélo 3W+tracker (atmega, ESP32) maker

La régulation de courant de l’Arduino Nano est avec un hachage à 32 kHz.
Contrainte : La taille de l’inductance du hacheur est relativement importante. Pour 320 kHz elle serait divisée par 10.
Perspective : Le hacheur de la carte électronique peut-être remplacer par un composant électronique FL7760. Ce composant est destiné aux applications d’éclairage à Led et comporte des hacheurs.

Suivant la documentation du constructeur, nous avons réaliser une carte électronique de régulation de courant. Sur la doc on peut trouver les performances de la fréquence de hachage (1MHz) et la consommation du circuit intégrer (300 microA). L’hystérésis est de plus ou moins 30mV, le reste n’est pas trop indiquée.
Donc pour un courant Led de 0,4 A

On néglige dans un premier temps la puissance du transistor et de la diode., qui sont surdimensionnés par rapport au courant Led pour ne pas mettre de dissipateur.

Voici le schéma ISIS avec le choix des composants

Voici nos mesures expérimentales visant à caractériser les performances du régulateur 7760 :
D’une part pour une tension d’alimentation de 10 V puis 16 V. Puis en variant la résistance de mesure de 1 Ω à 0,5 Ω. Car elle n’est pas précisée dans la documentions constructeur...

  • Détermination du rapport cyclique
  • Détermination de la fréquence de fonctionnement
  • Vérification de l’ondulation de courant
  • Mesure du courant d’entrée et détermination de la puissance absorbé
  • Détermination des caractéristiques de la Led (tension, courant et puissance utile)
  • Calcul du rendement
  • Éclairement
    Tableau récapitulatif des mesures :

    Pour l’éclairement : 860 Lux à 10 cm pour une puissance de 0,42 W.

La régulation de courant dans la Led fonctionne bien
Les pertes deviennent négligeables pour un courant supérieur à 0.4A avec une résistance Rsense de 0,5ohms, donc un rendement de 70% à la place de 90% théorique.
On a effectué une mesure à vide de la consommation du 7760 et on trouve 400 μA au lieu de 300microA
Mais ça ne change pas tant que ça la valeur théorique du rendement. On pense que cette différence de 100 μA est dû à la commande du transistor…c’est une hypothèse.

Avec une inductance de 100 μH, on a une fréquence entre 300 kHz et 200 kHz correspondant à l’équation théorique suivante avec 60mV

Donc, en théorie, si on divise notre inductance par deux on multiplie d’autant notre fréquence.
On a effectué une vérification pratique avec une valeur d’inductance de 50 μH. On obtient une valeur de 400 kHz.
Mais une valeur de 33 μH, On obtient une toujours une fréquence de 400 kHz qui est certainement dû aux ondulations parasite du typon que l’on peut observer sur les figures suivantes.

Ondulation pour 200 kHz

Ondulation pour 400 kHz

Mais comment faire varier la puissance de la led avec l’arduino

A partir de la doc constructeur et sur notre schéma, il y a une broche DIMMING du FL7760.
Cette broche sert à faire varier le courant de la LED. Il faut pour cela appliqué un signal PWM et faire varier le rapport cyclique normalement supérieure à 2KHz.
On a appliqué un signal PWM de 32 kHz et d’amplitude 5 V, en faisant varié le rapport cyclique on observe une variation de la tension Vsense image du courant de notre LED.
On a effectué une série de mesures sur la broche DIM ainsi que sur la résistance Rsense :

Donc le courant led correspond à l’équation suivante :

Conclusions :
Avec le choix de nos composant, le courant led peut atteindre 3A avec une fréquence de 400khz en minimisant l’inductance à 30μH avec un rendement qui va être aux alentours de 90%. Mais qu’il faudra vérifier.

1 Like