Making a calculator using an Arduino

Hi guys;

As the title said, I am trying to do a programing exersise to make a basic calculator using a telephone keypad and 8 7 segments display.

Here what I am planning to do :

Enter a number, add it, and sum it. Easy to say, but no so easy to be done.

I will be learning to do a program do do just that. I know, it all depend of the type of hardware.

I did the display and the keypad circuit. I did a test program for the display and the keypad to see if it is working.

The display : Use MAX7219 to display the 8 7 segments display. The display is a CC type. Test code will be in the next post.
The keypad : A telephone keypad, with a commun connection, <-- A Row will indicated a LOW at the location of that row being press, same thing goes for the colum. I made an interrupt pulse - HIGH for any key press. If I need that pusle. A test code will be in the next post.

Next, it is to combine them and code it.

Any help, some codes, pseudo-code is very welcome. I will try to do mine version, and figure this out. Any ideas of coding this project will be nice.

Here a picture of the display and the test code. For the new guys or to the one who are not familiar with the MAX7219. This info came from the datasheet. http://www.datasheetcatalog.org/datasheet/maxim/MAX7219-MAX7221.pdf

const byte datapin = 12;
const byte latchpin = 11;
const byte clockpin = 10;

void setup()
{
 pinMode(datapin, OUTPUT);
 pinMode(latchpin, OUTPUT);
 pinMode(clockpin, OUTPUT);
 // set : Normal Mode
 digitalWrite(latchpin, LOW);
 shiftOut(datapin, clockpin, MSBFIRST, 0x0C );
 shiftOut(datapin, clockpin, MSBFIRST, 0x01 );
 digitalWrite(latchpin, HIGH);
 delay(5);
 // set : Normal Operation
 digitalWrite(latchpin, LOW);
 shiftOut(datapin, clockpin, MSBFIRST, 0x0F );
 shiftOut(datapin, clockpin, MSBFIRST, 0x00 );
 digitalWrite(latchpin, HIGH);
 delay(5);
 // set : Intensity 
 digitalWrite(latchpin, LOW);
 shiftOut(datapin, clockpin, MSBFIRST, 0x0A );
 shiftOut(datapin, clockpin, MSBFIRST, 0x0B );
 digitalWrite(latchpin, HIGH);
 delay(5);
 // set : Numbers of digits 
 digitalWrite(latchpin, LOW);
 shiftOut(datapin, clockpin, MSBFIRST, 0x0B );
 shiftOut(datapin, clockpin, MSBFIRST, 0x07 );
 digitalWrite(latchpin, HIGH);
 delay(5); 
 // set : Decode Mode Register
 digitalWrite(latchpin, LOW);
 shiftOut(datapin, clockpin, MSBFIRST, 0x09 );
 shiftOut(datapin, clockpin, MSBFIRST, 0xFF );
 digitalWrite(latchpin, HIGH);
 }

void loop()
{
 byte j;
 
 for (int i=1;i<9;i++)
 { 
   digitalWrite(latchpin, LOW);
   shiftOut(datapin, clockpin, MSBFIRST, i );
   shiftOut(datapin, clockpin, MSBFIRST, i );
   digitalWrite(latchpin, HIGH);
   delay(5);
 } 
 delay(2000);
 j = 8;
 for (int i=1;i<9;i++)
 {
   digitalWrite(latchpin, LOW);
   shiftOut(datapin, clockpin, MSBFIRST, i );
   shiftOut(datapin, clockpin, MSBFIRST, j );
   digitalWrite(latchpin, HIGH);
   delay(5);
   j--;
 }
 delay(2000); 
}

Here a picture of the keypad and the test code.

//**************************************************************//
//  Name    : shiftIn Example 1.1                              //
//  Author  : Carlyn Maw                                        //
//  Date    : 25 Jan, 2007                                      //
//  Version : 1.0                                               //
//  Notes   : Code for using a CD4021B Shift Register    	//
//          :                                                   //
//****************************************************************
// Modify code by Techone from the original
// This code is just an example of using a telephone keypad
// with the use of 4021 and using shiftIn() function.
// Use only shiftIn () function
/* 
    --------------
     1      2    3  <-- Row 1  
     4      5    6  <-- Row 2
     7      8    9  <-- Row 3
     *      0    #  <-- Row 4
     -------------
    /\     /\   /\
     |     |     |
    Col 1 Col 2 Col 3 
    
   Telephone keypad pinouts
   
   gnd, col 2, col 1, row 4, col 3, row 3, row 2, row 1
   4021 connection :
   
   gnd   : pin 1
   col 1 : pin 15
   col 2 : pin 14
   col 3 : pin 13
   row 1 : pin 4
   row 2 : pin 5
   row 3 : pin 6
   row 4 : pin 7
      
   All keypad pins are with a 1 K pull-up resistor.
   
   All keypad outputs goes to a 74LS04 to be inverted.
   At outputs of the 74LS04 going into the 4021, place a 
   pull-up resistor of 4.7 K. It is for TTL --> CMOS 
   
   And connected all row output to a 74LS20 for
   a interrupt signal output or any keypress output signal.
   Work like : 0 - no ley
               1 - a key is being press
      
   Tigh Serial In - pin 11 to gnd.
   
   Therefore the outputs bits are : R4-R3-R2-R1-C3-C2-C1
       
   Button = 1 = 0b00001001 = 0x09 = 9
   Button = 2 = 0b00001010 = 0x0A = 10
   Button = 3 = 0b00001100 = 0x0C = 12
   Button = 4 = 0b00010001 = 0x11 = 17
   Button = 5 = 0b00010010 = 0x12 = 18
   Button = 6 = 0b00010100 = 0x14 = 20
   Button = 7 = 0b00100001 = 0x21 = 33
   Button = 8 = 0b00100010 = 0x22 = 34
   Button = 9 = 0b00100100 = 0x24 = 36
   Button = * = 0b01000001 = 0x41 = 65
   Button = 0 = 0b01000010 = 0x42 = 66
   Button = # = 0b01000100 = 0x44 = 68
   Button = None press = 0b00000000 = 0x00 = 0 
*/

//define where your pins are
int latchPin = 11;
int dataPin = 12;
int clockPin = 10;

//Define variables to hold the data 
//for shift register.

byte switchVar;

void setup() {
  //start serial
  Serial.begin(9600);

  //define pin modes
  pinMode(latchPin, OUTPUT);
  pinMode(clockPin, OUTPUT); 
  pinMode(dataPin, INPUT);
  
}

void loop() {

  //Pulse the latch pin:
  //set it to 1 to collect parallel data
  digitalWrite(latchPin,HIGH);
  //set it to 1 to collect parallel data, wait
  delayMicroseconds(20);
  //set it to 0 to transmit data serially  
  digitalWrite(latchPin,LOW);

  //while the shift register is in serial mode
  //collect each shift register into a byte
  //the register attached to the chip comes in first 
  switchVar = shiftIn(dataPin, clockPin,LSBFIRST);

  //Print out the results.
   
  Serial.print(switchVar, BIN);
  Serial.print("  ");
  Serial.print(switchVar, HEX);
  Serial.print("  ");
  Serial.println(switchVar, DEC);
  
//white space
Serial.println("-------------------");
//delay so all these print satements can keep up. 
delay(1000);

}

I would suggest the <keypad.h> library for reading the key presses, works very well.
No external hardware needed, just 8 IO pins.

Hi TechOne, SO far so good things are working i think.
Where in you are seeking code help or input?
I think you yourself are working pretty fine! :slight_smile:

@Techone

Did you find a cheap source for those displays or just pull it from an old calculator?

Looks like a fun project BTW.


Rob

@Graynomad

Did you find a cheap source for those displays or just pull it from an old calculator?

Old calculator ? No They are a 3 digit 7 segments display. I got them for $0.50 ca at Active Surplus. So I got myself a few of those.

It is a fun project. It just help me out to learn in programing, use a keypad and use a MAX7219.

@ CrossRoads

I agree with you. I did look into the keypad.h. I download the library. The small problem with this solution is : Use to many pins. So I was planing to use the 4021. I was planning to build a circuit for a 4 X 5 keypad matrix using the 4021. Beside a byte have 256 combinations. I also look into the use of the chip MAX1234, a touch pad / keypad encoder compatible with SPI <-- will work with shiftIn() too. Datasheet site : http://datasheets.maxim-ic.com/en/ds/MAX1233-MAX1234.pdf I check Mouser.com if they have it, they do, but no DIP version. The chip is QFN. ... I got a little hope with this site. http://www.ezprototypes.com/index.php Click the Chips Adapters and Sockets.

@NI$HANT

Where in you are seeking code help or input?

Both. I am open mind about new code, new help or new ideas. This project is just some kind of "homework".

Updated :

I put the two circuit together. I did a code. It just simply "scroll" a number you press the keypad. When I press nothing, no movement, scrolling. I press a key, a number coresponding the key I press show up. The next key I press show up and place the last key next to it.<-- Shifting the number to the left.

So far, my code I have now, work just fine, but it is the keypad I have an issue with ( I think ) , during the serial monitor, the bits do not all show up. I press a key and a row bit show but no col bit, sometime it show, sometime it does not. Maybe the hex Inverter chip - 74LS04 / 74LS14 maybe not right for the job. I do have in my parts bins a 4049, 74HC04 and 74HC14. I wil see if that will work. With the 4049, I have to re-wired the breadboard setup. I will try to wired directely the keypad to the 4021 chip, code the variable - keydata - invert the data so I can use the code almost as is. If that does not work to well , I will use a LM339 comparator and inverter chip. <-- I know, it is overkill.

Here the code I have so far.

// Keypad Serial pins
const byte latchkeypin = 10;
const byte datakeypin = 12;
const byte clockkeypin = 11;

// Display Serial pins
const byte datadisplaypin = 9;
const byte clockdisplaypin = 8;
const byte latchdisplaypin = 7;

// Anykey pin
const byte anykeypin = 2;

// MAX7419 init data
word initdata[5] = { 0x0C01, 0x0F00, 0x0A0B, 0x0B07, 0x09FF };

// Fill the Display array with a blank code
word display_data[8] = { 0x010F, 0x020F, 0x030F, 0x040F, 0x050F, 0x060F, 0x070F, 0x080F };  

volatile boolean keystate;

byte keydata;
byte keynumber;
byte data_box;


void setup() 
{
  //start serial
  Serial.begin(9600);

  //define the pins modes
  pinMode(latchkeypin, OUTPUT);
  pinMode(clockkeypin, OUTPUT); 
  pinMode(datakeypin, INPUT);
  pinMode(datadisplaypin, OUTPUT);
  pinMode(clockdisplaypin, OUTPUT);
  pinMode(latchdisplaypin, OUTPUT);
  pinMode(anykeypin, INPUT);
  attachInterrupt(0,anykeypress,RISING);
  
  /* Init the MAX7419 : Normal Mode
                        Normal Operation
                        Setting the Intensity
                        Numbers of Digits being display
                        Set to Decode Mode
  */
 
  for (int i=0;i<5;i++)
  {  
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(initdata[i]));
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(initdata[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
  }
  // Blank the display
  display_the_numbers();
  keystate = 0;
  data_box = 1;
}  

void loop()
{
  data_box = 1;
  while ( keystate == 0) 
  { 
     // wait for a key press 
  }
  read_keypad();
  convert_the_keypad_data();
  if ( keynumber < 0x0A )
  {
     for (int i=7;i>0;i--)
     {
       display_data[i]=display_data[i-1];
       display_data[i] = word ( (i+1) , lowByte( display_data[i] ) );
     }
     
     display_data[0] = word ( 1, keynumber );
     data_box++;
  }
  display_the_numbers();
  keystate = 0;  
  
  //Print out the results.
   
    Serial.print(keydata, BIN);
    Serial.print("  ");
    Serial.print(keydata, HEX);
    Serial.print("  ");
    Serial.print(keynumber, HEX);
    Serial.print("  ");
    Serial.println(keydata, DEC);
  
//white space
//Serial.println("-------------------");
//delay so all these print satements can keep up. 
    delay(1000);

//display_the_numbers();

}

void read_keypad()
{
  //Pulse the latch pin:
  //set it to 1 to collect parallel data
  digitalWrite(latchkeypin,HIGH);
  //set it to 1 to collect parallel data, wait
  delayMicroseconds(20);
  //set it to 0 to transmit data serially  
  digitalWrite(latchkeypin,LOW);

  //while the shift register is in serial mode
  //collect each shift register into a byte
  //the register attached to the chip comes in first 
  keydata = shiftIn(datakeypin, clockkeypin,LSBFIRST);  
} 

void convert_the_keypad_data()
{
  byte what_row;
  
  what_row = ( keydata >> 3) & 0x0F;
  switch ( what_row)
  {
    case 1:
           keynumber = ( ( keydata >> 1 ) & 0x03 ) + 1;
           break;
    case 2:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 4;
           break;
    case 4:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 7;
           break;
    case 8:
           special_key();
           break;    
  }  
  
}  

void display_the_numbers()
{
   for (int i=0;i<8;i++)
   {
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(display_data[i]) );
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(display_data[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
   }  
}

void special_key()
{
   byte special_case;
   
   special_case = ( ( keydata >> 1) & 0x03 ) + 1;
   switch ( special_case )
   {
     case 1:
            keynumber = 0x0F;
            break;
     case 2:
            keynumber = 0x00;
            break;
     case 3:
            keynumber = 0x0C;
            break;
   }        
}

void anykeypress()
{
  keystate = 1; 
}

during the serial monitor, the bits do not all show up. I press a key and a row bit show but no col bit, sometime it show, sometime it does not.

Serial data is so undependable ,i recently had a lot lot problem grabbing the serial data in char arrays and putting them into strings then finally i tried using <Packets> and serial flush with serial debug statements then everything became very predictable and i was able to grab the data precisely from Serial buffer.
WHEN YOU say SOMETIME it SHOW SOMETIME it does not then it definitely points out to this same problem.

@NI$HANT

WHEN YOU say SOMETIME it SHOW SOMETIME it does not then it definitely points out to this same problem.

I was using the Serial.print() to see what data I have. I was monitoring the keyboard data. I got monitor the bits - BIN , an hex value - HEX and the number I press - DEC. The data in binary show me all the pins from the keypad. I was expecting this :

0b0000000 for no key press. When I press 1, the binary result is : 0b00001001 The rows bits are : 0 RRRR CCC R is a row bit. The col bits are : 0 RRRR CCC C is the col bits. So I expect a bit at the row and col when I press a key. I only received this : 0b00001000 <-- that binary result. The interrupt pulse is activated. Because all the rows pins are connect to an 4 input NAND gate - 74LS20. So if I received no bits at : 00000 CCC <-- any of the C location, but a bit is activated in the 0 RRRR CCC row location.

So I concluded that the keypad is a bit "bad" or not so conductive. I did try to change 74LS04 ---> 74LS14. Got worse, not better. Maybe TTL gate are more "picky" when I come to voltage input level. Come to think of it, when a key is press, the keyboard do not really make a proper "short" = 0 = LOW for the TTL gate, the voltage is not low enought to become a zero for the TTL gate is consern. I will try CMOS gate. They are less "picky" , but they are "picky" about static electricity. One tiny "zap" and it is "Bye-Bye chippo ... ". If that solution is not working, the LM339 route. I will set to 2.5 V for reference. Now that I call "overkill". I will need 2 chip of the LM339. I have those in my parts bins. And I know, a lost of breadboarding.

the Serial.print() to see what data I have

I think that is ok but sometimes we use flushing and Packets atleast at the end of the elements we are sending so as to make them land complete in the programme but nevermind as you are saying that the keypad isn't that much conductive.

And I know, a lost of breadboarding.

A a lots of BreadBoarding atleast its easier than the Solder breadboarding.

Updated :

I got the keyboard working better by using 74HC14. But a few "double entry" and a few "not reading right". In that case, I will use the LM339 to take care of the keypad "bad contact". Just a lots of breadboarding.

I just finish coding the calculator program. So far, The "Add" section is not working right. I may need some help. The rest is working fine. The "Clear" section is working fine. I will double check the "keynumber" section. Look it is working fine, but I will double check it.

I may re-code the "add" section. Instead of extracting the thousands, hundrens, tens, etc, and use a long variable, I will try the method use when we where in Grade 3. How to add a number.

Any help from you guys will be nice.

Here the Add section:

// Check for the "Add / Equal" button
    if ( ( keynumber == 0x0B ) && ( over_flow == 0) )
    {      
      the_number= 0;
      for (int i=0;i<8;i++)
      {
        temp_number = long(digit_number[i]) * power_of_ten[i];
        the_number = the_number + temp_number;       
      }  
      add_number = add_number + the_number;
      if (add_number <= 99999999)
      {
        for (int i=7;i>=0;i--)
        {
          digit_number[i] = byte(add_number / power_of_ten[i]);
          add_number = add_number - (long(digit_number[i]) * power_of_ten[i]); 
          display_data[i] = word ( ( i + 1) , digit_number[i] );        
        }
        for (int i=7;i>0;i++)
        {
          if ( digit_number[i] == 0 )
          {
             display_data[i] = word ( ( i + 1 ), 0x0F );
          }
          else 
          {
            break;
          }   
        }
        
        display_the_numbers();
        add_flag = 1;
        keystate = 0;
      }
      else
      {
        // Over Flow
        over_flow = 1;
        digit_number[0] = 0;
        display_data[0] = 0x010B;
        for ( int i=1;i<8;i++)
        {
           digit_number[i] = 0;
           display_data[i] = word( (i+1), 0x0F );               
        }      
        keystate = 0;      
        display_the_numbers();           
      }

Here the complete code:

/*
   size : 3118 bytes
   
   Calculator Version 1.0
   
   Just add a number enter by the keypad and display it.
   With 2 function : Add / Equal ===> * button 
                     Clear ==>  # button
   It will use a MAX7219 for display the data ( for the shiftOut() ).
   and a 4021 for the keypad input data with the use of 
   an NOT gate 74HC14. ( for the shiftin() )
   See the keypad example in the tread for details.
  
   The interrupt use a 72LS20 from the row pins, any LOW signal will
   produce a HIGH pulse to be use has an interrupt signal.

   By Serge J Desjardins
   aka techone / tech37
   Toronto, Ontario, Canada

   Compile and Tested.
   
   Bug :
   The add section need to be re-code.
*/

// Keypad Serial pins
const byte latchkeypin = 10;
const byte datakeypin = 12;
const byte clockkeypin = 11;

// Display Serial pins
const byte datadisplaypin = 9;
const byte clockdisplaypin = 8;
const byte latchdisplaypin = 7;

// Anykey and interrupt pin
const byte anykeypin = 2;

// MAX7419 init data
word initdata[5] = { 0x0C01, 0x0F00, 0x0A0B, 0x0B07, 0x09FF };

// Fill the Display array with a blank code
word display_data[8] = { 0x0100, 0x020F, 0x030F, 0x040F, 0x050F, 0x060F, 0x070F, 0x080F };  

// The digit array
byte digit_number[8] = {0,0,0,0,0,0,0,0};

// For the digits extraction calculation
long power_of_ten[8] = {1,10,100,1000,10000,100000,1000000,10000000};

// Key press keypad flag 
volatile boolean keystate;

// Overflow flag
boolean over_flow;
// add button flag
boolean add_flag;
// Clear button flag
boolean clear_flag;

// The keypad data 
byte keydata;
byte keynumber;

// the ADD calculation
long the_number;
long temp_number;
long add_number;


void setup() 
{
  //start serial
  //Serial.begin(9600);

  //define the pins modes
  pinMode(latchkeypin, OUTPUT);
  pinMode(clockkeypin, OUTPUT); 
  pinMode(datakeypin, INPUT);
  pinMode(datadisplaypin, OUTPUT);
  pinMode(clockdisplaypin, OUTPUT);
  pinMode(latchdisplaypin, OUTPUT);
  pinMode(anykeypin, INPUT);
  // setup the interrupt pin
  attachInterrupt(0,anykeypress,RISING);
  
  /* Init the MAX7419 : Normal Mode
                        Normal Operation
                        Setting the Intensity
                        Numbers of Digits being display
                        Set to Decode Mode
  */
 
  for (int i=0;i<5;i++)
  {  
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(initdata[i]));
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(initdata[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
  }
  // Blank the display
  display_the_numbers();
  // init the flags and the calculation variable
  keystate = 0;
  add_number = 0;
  add_flag = 0;
  over_flow = 0;
  clear_flag = 1;  
}  

void loop()
{  
  while ( keystate == 0) 
  { 
     // wait for a key press 
  }
  read_keypad();
  convert_the_keypad_data();
  // reset add flag and set the display 
  if ( (( add_flag == 1) || ( clear_flag = 1 )) && ( over_flow == 0 ) )
  {
    for (int i=0;i<8;i++)
    {
      digit_number[i] = 0;
      display_data[i] = word ( ( i+1 ), 0x0F );
    }
    add_flag = 0;
    clear_flag = 0;  
  }
  // Enter the numbers routine  
  if ( ( keynumber < 0x0A ) && ( over_flow == 0 ) )
  {      
     // Enter the key number and move the arrays data.     
     for (int i=7;i>0;i--)
     {
       digit_number[i] = digit_number[i-1];
       display_data[i]=display_data[i-1];
       display_data[i] = word ( (i+1) , lowByte( display_data[i] ) );
     }
     digit_number[0] = keynumber;     
     display_data[0] = word ( 1, keynumber );     
     display_the_numbers();
     keystate = 0;    
  }
  else
  {
    // Check for the "Add / Equal" button
    if ( ( keynumber == 0x0B ) && ( over_flow == 0) )
    {      
      the_number= 0;
      for (int i=0;i<8;i++)
      {
        temp_number = long(digit_number[i]) * power_of_ten[i];
        the_number = the_number + temp_number;       
      }  
      add_number = add_number + the_number;
      if (add_number <= 99999999)
      {
        for (int i=7;i>=0;i--)
        {
          digit_number[i] = byte(add_number / power_of_ten[i]);
          add_number = add_number - (long(digit_number[i]) * power_of_ten[i]); 
          display_data[i] = word ( ( i + 1) , digit_number[i] );        
        }
        for (int i=7;i>0;i++)
        {
          if ( digit_number[i] == 0 )
          {
             display_data[i] = word ( ( i + 1 ), 0x0F );
          }
          else 
          {
            break;
          }   
        }
        
        display_the_numbers();
        add_flag = 1;
        keystate = 0;
      }
      else
      {
        // Over Flow
        over_flow = 1;
        digit_number[0] = 0;
        display_data[0] = 0x010B;
        for ( int i=1;i<8;i++)
        {
           digit_number[i] = 0;
           display_data[i] = word( (i+1), 0x0F );               
        }      
        keystate = 0;      
        display_the_numbers();           
      }         
    }
    
    // Check for the "Clear" button 
    if ( keynumber == 0x0E )
    {
      digit_number[0] = 0;
      display_data[0] = 0x0100;
      for ( int i=1;i<8;i++)
      {
        digit_number[i] = 0;
        display_data[i] = word( (i+1), 0x0F );               
      }
      add_number = 0;
      keystate = 0;
      over_flow = 0;
      add_flag = 0;
      clear_flag = 1;
      display_the_numbers();     
    }    
  }   
  //For troubleshooting the program using Serial Monitor
 /*  
    Serial.print(keydata, BIN);
    Serial.print("  ");
    Serial.print(keydata, HEX);
    Serial.print("  ");
    Serial.print(keynumber, HEX);
    Serial.print("  ");
    Serial.println(keydata, DEC);
    delay(1000);
*/
}

// Read keypad data via a 74HC14 - Inverter from the 4021
void read_keypad()
{
  digitalWrite(latchkeypin,HIGH);
  delayMicroseconds(20);
  digitalWrite(latchkeypin,LOW);
  keydata = shiftIn(datakeypin, clockkeypin,LSBFIRST);  
} 

// Convert the keypad data into BCD
// And a code for *, 0, # button
void convert_the_keypad_data()
{
  byte what_row;
  
  what_row = ( keydata >> 3) & 0x0F;
  switch ( what_row)
  {
    case 1:
           keynumber = ( ( keydata >> 1 ) & 0x03 ) + 1;
           break;
    case 2:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 4;
           break;
    case 4:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 7;
           break;
    case 8:
           special_key();
           break;    
  }  
  
}  

// the display the data routine to the MAX7219 
void display_the_numbers()
{
   for (int i=0;i<8;i++)
   {
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(display_data[i]) );
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(display_data[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
   }  
}

// A special code for 0, *, # button
void special_key()
{
   byte special_case;
   
   special_case = ( ( keydata >> 1) & 0x03 ) + 1;
   switch ( special_case )
   {
     case 1:
            keynumber = 0x0E;
            break;
     case 2:
            keynumber = 0x00;
            break;
     case 3:
            keynumber = 0x0B;
            break;
   }        
}

// Interrupt Routibe
void anykeypress()
{
  keystate = 1; 
}

byte digit_number[8] = {0,0,0,0,0,0,0,0};

// For the digits extraction calculation
long power_of_ten[8] = {1,10,100,1000,10000,100000,1000000,10000000};

should the arrays not be [7] here?i think the last one is free.

array -> 7 ? No... 8 "Boxes" :wink: from Box 0 to Box 7 = 8 boxes

The arrays need data into them. I init my arrays, even it is Zero's. The code need it. I always init my variables.

My full calculator code is compiling. A bug in the Add section, an execution bug. I need to check it out, and maybe re-code that section.

The problem with me when I code, I have "writter's block". My mind is just "blank" and I have no clue how can I do this, and it is the lack of ideas of how can I program this out. That what I call "Writter's block".

I have "writter's block". My mind is just "blank" and I have no clue how can I do this

Why don't you just form specific functions for specific tasks like for e.g. >> Add() function for adding and pass on the processed variables(after formulating them for unit place etc.) into the respective function after just checking the * for Add or equal button .

I think one reason you have a bug is that there is just too much going on in the one function. As Nis$hant inferred you should compartmentalise things.

Also I don't think you need all the array shuffling and IMO read_keypad() should return a human-readable value, ie 0-9 and + etc.

For example here's is a simpler way (I think)

long num1;
long num2;
long result;
long *curr_num = num1;
byte key;

loop () {
	key = read_keypad();	// this should return an int == to the numeric key entered or obvious values for '=' etc

	switch (key) {

		case '+':
		    if (curr_num == num1) {	// if first number just start accululating into second number
				curr_num = num2;
			} else {
				addNumbers();		// if the second number add them
			}
			break;
		
		case '=':
			addNumbers();
			break;
				
		default:
			accumulateNumber();
			display_number(curr_num);

	}
}

void addNumbers () {
	result = num1 + num2;
	display_number(result);
	curr_num = num1;
	num1 = 0;
	num2 = 0;
}

void accumulateNumber () {
	*curr_num *= 10;
	*curr_num += key;
}

void display_number(long * num){
	for (int x = 0; x < 8, x++) {
		shiftNum (num % 10);	// send digit out
		num /= 10;
	}
}

This is little more than psuedo code and there's no error checking etc but I think it's easy to follow and if there's a bug it should be easy to isolate.


Rob

Yes Sir ROB i used to do similar coding while i programmed addition/subtraction/division/multiplication calculator back 2 years from now in VB.
The approach is pretty simple and easy to grasp while Mr. Serje may not have any fault in his programme but due to increased cluttering he might not be able to stay on the correct logical path.

@Graynomad

Thanks for your idea. I may change my code if I have issues. Oh yes... I still do... will change the code later.

@NI$HANT

I agree with you. I may have to change my code for a modular method of coding. I have to many if()'s. I will have to do that later.

Updated :

I did re-code the add section, no modular method yet. Still have an issues with the keypad. I have : Double entry and wrong entry. All intermittents problems. I may have to re-design the keypad circuit. Right now, it is not reliable.

As for the code, after the Add section change, still some bugs... But I like the new methode of adding. Just like :

Carry : 1111
1234 <-- Array call : digit_number[]

  • 9876 <-- Array call : add_number[]

Last Digit ->11110 The last digit is the OverFlow. So I add two array + the carry. That is the logic behind the Add routine.

The section that work : entry routine, the clear routine, keypad routine, convert routine and the display routine.
I will use the Serial Monitor to see what is going on.

The updated code is the next post.

Thank for the idea. I will apreaciated that you guys check my code.

Here my updated code :

/*
   size : 2648 bytes
   
   Calculator Version 1.5
   
   Just add a number enter by the keypad and display it.
   With 2 function : Add / Equal ===> * button 
                     Clear ==>  # button
   It will use a MAX7219 for display the data ( for the shiftOut() ).
   and a 4021 for the keypad input data with the use of 
   an NOT gate 74HC14. ( for the shiftin() )
   See the keypad example in the tread for details.
  
   The interrupt use a 72LS20 from the row pins, any LOW signal will
   produce a HIGH pulse to be use has an interrupt signal.

   By Serge J Desjardins
   aka techone / tech37
   Toronto, Ontario, Canada

   Compile and Tested.   
*/

// Keypad Serial pins
const byte latchkeypin = 10;
const byte datakeypin = 12;
const byte clockkeypin = 11;

// Display Serial pins
const byte datadisplaypin = 9;
const byte clockdisplaypin = 8;
const byte latchdisplaypin = 7;

// Anykey and interrupt pin
const byte anykeypin = 2;

// MAX7419 init data
word initdata[5] = { 0x0C01, 0x0F00, 0x0A0B, 0x0B07, 0x09FF };

// Fill the Display array with a blank code
word display_data[8] = { 0x0100, 0x020F, 0x030F, 0x040F, 0x050F, 0x060F, 0x070F, 0x080F };  

// The digit array
byte digit_number[8] = {0,0,0,0,0,0,0,0};

// The second array - The total number
byte add_number[9] = {0,0,0,0,0,0,0,0,0};

// Key press keypad flag 
volatile boolean keystate;

// Overflow flag
boolean over_flow;
// add button flag
boolean add_flag;
// Clear button flag
boolean clear_flag;

// The keypad data 
byte keydata;
byte keynumber;

void setup() 
{
  //start serial
  //Serial.begin(9600);

  //define the pins modes
  pinMode(latchkeypin, OUTPUT);
  pinMode(clockkeypin, OUTPUT); 
  pinMode(datakeypin, INPUT);
  pinMode(datadisplaypin, OUTPUT);
  pinMode(clockdisplaypin, OUTPUT);
  pinMode(latchdisplaypin, OUTPUT);
  pinMode(anykeypin, INPUT);
  // setup the interrupt pin
  attachInterrupt(0,anykeypress,RISING);
  
  /* Init the MAX7419 : Normal Mode
                        Normal Operation
                        Setting the Intensity
                        Numbers of Digits being display
                        Set to Decode Mode
  */
 
  for (int i=0;i<5;i++)
  {  
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(initdata[i]));
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(initdata[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
  }
  // Blank the display
  display_the_numbers();
  // init the flags and the calculation variable
  keystate = 0;  
  add_flag = 1;
  over_flow = 0;
  clear_flag = 1;  
}  

void loop()
{  
  while ( keystate == 0) 
  { 
     // wait for a key press 
  }
  read_keypad();
  convert_the_keypad_data();
  // Enter the numbers routine  
  if ( ( keynumber < 0x0A ) && ( over_flow == 0 ) )
  {  
     if ( ( add_flag == 1) && ( clear_flag = 1 ) )
     {
       for (int i=0;i<8;i++)
       {
         digit_number[i] = 0;      
         display_data[i] = word ( ( i+1 ), 0x0F );
       }      
     }    
     // Enter the key number and move the arrays data.     
     for (int i=7;i>0;i--)
     {
       digit_number[i] = digit_number[i-1];
       display_data[i]=display_data[i-1];
       display_data[i] = word ( (i+1) , lowByte( display_data[i] ) );
     }
     digit_number[0] = keynumber;     
     display_data[0] = word ( 1, keynumber );     
     display_the_numbers();
     add_flag = 0;
     clear_flag = 0;
     keystate = 0;    
  }
  else
  {
    // Check for the "Add / Equal" button
    if ( ( keynumber == 0x0B ) && ( over_flow == 0) )
    {      
      for (int i=0;i<8;i++)
      {
         add_number[i] = add_number[i+1] + add_number[i] + digit_number[i];
         if (add_number[i] > 0x09 )
         {
           add_number[i+1] = 1;
           display_data[i] = word ( ( i + 1 ), ( add_number[i] - 10 )); 
         }
         else 
         {
            display_data[i] = word ( ( i + 1 ) , add_number[i]);
         }        
      }  
      
      // check for over flow
      if ( add_number[8] > 0)
      {      
        over_flow = 1;
        digit_number[0] = 0;        
        display_data[0] = 0x010B;
        for ( int i=1;i<8;i++)
        {
           digit_number[i] = 0;
           display_data[i] = word( (i+1), 0x0F );               
        }      
        keystate = 0;
        over_flow = 1;
        add_flag = 1;      
        display_the_numbers();           
      }
      else 
      {
        keystate = 0;
        over_flow = 0;
        add_flag = 1;
        display_the_numbers();
      }      
    }
    
    // Check for the "Clear" button 
    if ( keynumber == 0x0E )
    {
      digit_number[0] = 0;
      add_number[0] = 0;
      display_data[0] = 0x0100;
      for ( int i=1;i<8;i++)
      {
        digit_number[i] = 0;
        add_number[i] = 0;
        display_data[i] = word( (i+1), 0x0F );               
      }
      add_number[8] = 0;
      keystate = 0;
      over_flow = 0;
      add_flag = 1;
      clear_flag = 1;
      display_the_numbers();     
    }    
  }   
  //For troubleshooting the program using Serial Monitor
 /*  
    Serial.print(keydata, BIN);
    Serial.print("  ");
    Serial.print(keydata, HEX);
    Serial.print("  ");
    Serial.print(keynumber, HEX);
    Serial.print("  ");
    Serial.println(keydata, DEC);
    delay(1000);
*/
}

// Read keypad data via a 74HC14 - Inverter from the 4021
void read_keypad()
{
  digitalWrite(latchkeypin,HIGH);
  delayMicroseconds(20);
  digitalWrite(latchkeypin,LOW);
  keydata = shiftIn(datakeypin, clockkeypin,LSBFIRST);  
} 

// Convert the keypad data into BCD
// And a code for *, 0, # button
void convert_the_keypad_data()
{
  byte what_row;
  
  what_row = ( keydata >> 3) & 0x0F;
  switch ( what_row)
  {
    case 1:
           keynumber = ( ( keydata >> 1 ) & 0x03 ) + 1;
           break;
    case 2:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 4;
           break;
    case 4:
           keynumber = (( keydata >> 1 ) & 0x03 ) + 7;
           break;
    case 8:
           special_key();
           break;    
  }  
  
}  

// the display the data routine to the MAX7219 
void display_the_numbers()
{
   for (int i=0;i<8;i++)
   {
     digitalWrite(latchdisplaypin, LOW);
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, highByte(display_data[i]) );
     shiftOut(datadisplaypin, clockdisplaypin, MSBFIRST, lowByte(display_data[i]) );
     digitalWrite(latchdisplaypin, HIGH);
     delay(5);
   }  
}

// A special code for 0, *, # button
void special_key()
{
   byte special_case;
   
   special_case = ( ( keydata >> 1) & 0x03 ) + 1;
   switch ( special_case )
   {
     case 1:
            keynumber = 0x0E;
            break;
     case 2:
            keynumber = 0x00;
            break;
     case 3:
            keynumber = 0x0B;
            break;
   }        
}

// Interrupt Routibe
void anykeypress()
{
  keystate = 1; 
}

Updated :

I did place the sections into a routine way. I re-modify my code. Almost the same code, except a bit more "modular"

Issue : The Add section still give me some problems. Sometime, it work, and then it is not, I even see the Over Flow ==> E the Numbers are lock and the add button is lock <== That is expected, that mean it did go through the Add Section. The clear work just great. Still have double entry, and I got the feeling my keypad circuit need to be change. The cause is : When I press a key, the voltage level is not approaching a LOW level for the input of the 74HC14. It is in the "If Zone" <-- "Can Not Make Up It Mind Level". So I will re-design the keypad circuit with LM339, and add a 555 circuit in a monostable mode to take care of the interrupt signal <-- possible cause of the "double" entry. The interrupt signal came from a 74LS20. The 555 is the "deboucing" circuit. And also, I may add a latch chip between the 74LS14 ( that is the buffer after the LM339 output ) and the 4021. Maybe the 555 output ? , or another digital out pin to take care of that ? 555 is a more reliable.

As for my code, I will keep it and test it with the new keypad circuit. Well I may change a bit the Add section... I press Add, and it display : 0000012 . That is just cosmetic bug, I will fix that in the Add section. Just replace the 0 before the 1 with 0x0F <-- code for Display Blank to be send at the MAX7219.

I know, it is sound overkill, I need reliability, that is why I overkill in my circuits and code. I am trying to remove Murphay's Law of the equation. Input + Murphay's Law = Garbage Output

Next post is the updated code.