Section-9: Pulse Width Modulated Signal

9.1 Introduction

In one cycle period of a digital signal, there is an ON-period and an OFF-period (Fig-9.1); where, the
ON-period is known as ‘duty cycle’ or ‘Pulse Width” or ‘Mark” and the OFF-period is known as
‘Space’. In Fig-9.1a, we have a 10 kHz signal of which the duty cycle is 50%. When the ON-period of
the signal changes, we get a signal what is known as ‘Pulse Width Modulated (PWM)” signal (Fig-
9.1b). The PWM signal is widely used to regulate the speed of a servo motor or to position the shaft of
a stepper motor.

v v

A A

3 A
50 us § 68 us i
: » ¢ : » t
€— 100 €— 100
3%] i

Figure-9.1a: PWM signal with 50 us pulse width Figure-9.1b: PWM signal with 68 us pulse width

9.2 Pre-defined PWM Signals in Arduino UNO

ATme328/ArduinoUNO MCY Pin A

(PD6)OCOA[12 Dpig ®lon] o

TCO } 980 Hz >1
(PD5)OCOB|11 5 1020 us .
(PB1)OCIA[15 49 - v

TC1 [(PB2)0C18[18 10 } 490Hz_ A -
(PB3)OC2A[17 il O ow o

TC2 . 490 Hz >
(PD3)OC2B|5 g3 _ 2040 us >

pwm328

Figure-9.2: Pre-defined PWM signals of Arduino UNO

(1) In Arduino UNO, the execution of this instruction: analogRead(3, dutyCycle) automatically
delivers 490 Hz PWM signal at DPin-3 (Fig-2). The duty cycle (ON-period) of the signal can be
varied from 0% to 100% by changing the value of arg2 (dutyCycle, an 8-bit variable) from 0x00

to OxFF.
analogWrite(DPin-n, arg2); //argl = DPin-n = 3, 11, 10, 9, 5, 6; arg2 is an 8-bit value
= analogWrite(3, 0x45); //duty cycle = 2040/256 * 0x45 ~ 612 pus (30%)

void setup()

analogWrite(3, 0x45);
¥

void loop()

}

If we connect an oscilloscope at DPin-3 of the UNO, we will see a 490 Hz square wave signal
with about 612 us ON-period.

(2) Asindicated in Fig-2, we can generate four 490 Hz PWM signals at DPin-3, 11, 10, 9 and two 980
PWM signals at DPin-5, 6 by executing the analogWVrite() function. There is no need of any
initialization. The analogWWrite() automatically assigns TCO for DPin-5, 6; TC1 for DPin-9, 10; TC2
for DPin-3, 11 for the generation of the respective PWM signals. The DPins are also
automatically configured to work as output lines.

1

(3) The value of arg2 of the analogWrite(DPin-n, arg2) function can be assigned directly (a fixed
value) or through an external user controlled variable to change/regulate the duty cycle of the
PWM signal. In the following example, the duty cycle of the PWM signal of DPin-3 changes as
the voltage value of the wiper point of Pot (potentiometer) changes. The affect of the pulse width
change can be visualized in the continuous dimming/intensifying of LED1 as the Pot value is

changed.

UNO

- LED1
3 R1=470R GND

5V

Pot

AO

| GND

pwm

Figure-9.3: 490 Hz PWM signal with varying duty cycle

(@) Connect R1-LED1 circuit and Pot circuit with UNO as per Fig-9.3.
(b) Upload the following sketch.

Byte

dutyCycle = 0;

int x;

void

void

}

setup()

analogWrite(3, dutCycle);

loop()

X = analogRead(AQ);

dutyCycle = map(x, 0, 1023, @, 255);//map() function compresses scale (0,1023)->(0,255)
analogWrite(3, dutCycle); //dutyCycle value is updated

delay(1000); //test interval; the affect will appear after 1-sec

(c) Slowly rotate Pot and observe that the intensity of LED1 changes which indicates that duty
cycle of the PWM signal is changing.
(4) A 50 Hz PWM signal can also be generated using Servo.h Library. This signal is useful to
position the shaft of stepper motor like Tower Pprro SG90 (Fig-9.4). The PWM signal becomes
available at any valid DPin when the following codes are uploaded in the UNO.

Voo =Red ([+) — [fDJ];
. Ground=Brown [=) —

1 -3 ms
Dy Oyl

4.8 Y (=5) [
Poramen |

s Signal

20 me (50 Hz)
WM Period

Figure-9.4: Tower Pro SGI0 stepper motor

#include <Servo.h>
Servo myservo; // create servo object to control a servo

2

void setup()

Myservo.attach(2); //PWM signal at Din-2
myservo.write(0x45); //at DPin-2, there is 50 Hz PWM signal with ON-period 20/255*69 = 5 ms

}

void loop()

}
(a) Remove R1-LEDI circuit from DPin-2 of Fig-9.3,

(b) Connect servo motor of Fig-9.4 with at DPin-2 of the UNO of Fig-9.3.
(c) Upload the following sketch:

#include <Servo.h>
Servo myservo; // create servo object to control a servo

int potpin = A@; // analog pin used to connect the potentiometer
byte val; // variable to read the value from the analog pin

void setup()

myservo.attach(3); // attaches the servo on pin 9 to the servo object

}
void loop()

val = analogRead(potpin); // reads value of Pot (value between © and 1023)
val = map(val, @, 1023, 0, 189); // scale it to use with servo (value between © and 1890)
myservo.write(val); // sets the servo position according to the scaled value
delay(15); // waits for the servo to get there
}
(d) Slowly turn Pot and check that the shaft position of the servo motor changes accordingly.

9.3 Dual Slope Phase Correct (Mode-10) PWM Signal using TC1

ICF1

TCNT1

ICR1(TOP)— - A o _C .. _ T AR T T —
B D * '/\H‘ /‘
OCR1A s
Al ocFia OW \/ >t
/ E ”

'_l\\’T S B

(DPin-9) =
OC1A/PWM
>t
U
One Period
pwmMode10 One Period
Figure-9.5: Phase correct Mode-10 PWM signal using TC1
15 0 15 0

OCRI1A ICR1
15
clksys No

e MH 2 PWM1A Generator OC1APB1) 19 -9
Z
> 8 | rer 15 A D OCPIA 1

164 ————3] TCNT1 | o> Tov1
1256 OCF1B

/11024 = OC1B(PB2) . [16 ~10

Ext. PWM1B Generator -

OCR1B ICR1
TC1 Clock 15 0 15 0
Prescaler pwmTC1

Figure-9.6: PWM Hardware of TC1 Module
3

@

@

©G)

In Fig-9.5, we observe that there is a “periodic digital signal” at DPin-9 of the Arduino UNO. This
is a PWM signal as its duty cycle (pulse width) can be changed. The period of the PWM signal is
confined within the rising and falling slopes of the reference signal ACE and hence the PWM
signal is known as ‘dual slope’ signal. Why is it called “phase correct’?

Frequency Determination: The

(a) Frequency of the PWM signal is the inverse of the period of the signal. The period (as we
can see in Fig-9.5) is equal to the time required for the TCNT1 Register to ‘count up from point-A
(initial count = 0) to point-C (count = content of ICR1 Register)” + ‘count down from point-C
(initial count = content of ICR1 Register) to point-E (final count = 0)’. Based on this principle, let
us find the equations for the frequency and the duty cycle of the PWM signal as a function of
clkTC1 (driving clock of TC1, Fig-9.6), N (prescale divider), ICR1 (content of ICR1 Register =
TOP value), and OCR1A (content of OCR1A Register).

(b) With initial value of 0x0000, the TCNT1 Register begins counting up from point-A to point-
C along the rising slope at clocking speed of cIkTC1l. When the content of TCNT1 Register
becomes equal to the content of OCR1A Register at point-B, the logic level of OC1A line at DPin-
9 assumes LOW state and remains LOW until point-D arrives. TCNT1 continues counting up
from Point-B until its content becomes equal to the content of ICR1 Register at point-C.

() Now, the TCNT1 starts counting down from point-C towards point-E along the falling
slope at the same clocking speed of clkTC1. When the content of TCNT1 Register becomes equal
to the content of OCR1A Register at point-D, the logic level of OC1A line assumes HIGH state
and remains HIGH until point-F arrives. We have got one period of the PWM Wave over the
points: B, D, and F (or can be said as: over the points: A, C, and E); where, BD is OFF-period and
DF is the ON-period/dutyCycle. As the PWM signal involves 2 slopes, it is called dual-slope
PWM signal. It is also known as “phase correct’ PWM signal. Why is it called phase correct PWM
signal?

(d) Now :

Period (T) of the PWM signal = Time-AC + Time-CE; where,

Time-AC = Time (for TCNT1) to count up from point-A to point-C = ICR1*1/clkTC1
Time-CE = Time (for TCNT1) to count down from point-C to point-E = ICR1*1/clkTc1

Period (T) = Time-AC + Time-CE = ICR1*1/clkTC1 + ICR1*1/clkTC1 = 2*ICR1*1/clkTC1
foctiarcrwm (frequency of the phase correct PWM signal) = 1/Period = clkcTC1/2*ICR1
focriapcrwm = (cIkSYS/N)/ (2*ICR1) = clckSYS/ (2*N*ICR1) = clckSYS/ (2*N*TOP)

TOP has been defined as the highest value in the counting sequence.
BOTTOM has been defined as the lowest value (0x0000) in the counting sequence.

The frequency of the PWM signal can be changed by changing the content of ICR1 Register. The
duty cycle can be changed by changing the content of OCR1A Register and OCR1B Register.

Duty Cycle Determination: From the above discussion and from Fig-9.5, it appears that the duty
cycle is NIL (0%) when the content of OCR1A Register is 0x0000 and the duty cycle id FULL
(100%) when the content of OCR1A Register is equal to the content of ICR1 Register (the TOP
value). For a given frequency of the PWM signal, the duty cycle can be varied by changing the
content of OCR1A Register.

4

@

94

9.5

Flags Activation:

(@) At point-B/D of Fig-9.5, compare match occurs between TCNT1 and OCR1 Registers when
their contents are equal; as a result, the ‘Output Compare A Match Flag (OCF1A)" of TIFR1
Register becomes HIGH; this flag can be used to interrupt the MCU after putting 1s into the
OCIE1A bit of TIMSK1 and I bit of SREG Registers. After interruption, the MCU vectors at
0x0016 from where it jumps at the following handler to accomplish interrupt services. The
OCFI1A flag is automatically cleared when the MCU vectors at the ISR; else, it can cleared by
writing LH (bitSet(TIFR1, 1)) at this bit position.

ISR(TIMER1_CMPA_vect)
{

}

(b) At point-C of Fig-9.5, compare match occurs between TCNT1 and ICR1 Registers when
their contents are equal; as a result, the ‘Input Capture Flag (ICF1)" of TIFR1 Register becomes
HIGH,; this flag can be used to interrupt the MCU after putting 1s into the ICIE1A bit of TIMSK1
and I bit of SREG Registers. After interruption, the MCU vectors at 0x0014 from where it jumps
at the following handler to accomplish interrupt services. The ICF1 flag is automatically cleared
when the MCU vectors at the ISR; else, it can cleared by writing LH (bitSet(TIFR1, 5)) at this bit
position.

ISR(TIMER1_CAPT vect)
{

}

(c) At point-E of Fig-9.5, the content of the TCNT1 Register becomes zero; as a result, the TOV1
flag of the TIFR1 Register becomes HIGH; this flag can be used to interrupt the MCU after
putting 1s into the TOIE1 bit of TIMSK1 and I bit of SREG Registers. After interruption, the
MCU vectors at 0x001A from where it jumps at the following handler to accomplish interrupt
services. The TOV1 flag is automatically cleared when the MCU vectors at the ISR; else, it can
cleared by writing LH (bitSet(TIFR1, 0)) at this bit position.

ISR(TIMER1_OVF_vect)
{

}

Sketch for 20 kHz dual-slope phase correct PWM signal using TC1 in Mode-10

Exercises

Waveform Generation Mode Bit Description:

WGM12 | WGM11 | WGM10 Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) Operation TOP | OCRixat| Seton
0 0 0 0 0 MNormal 0xFFFF | Immediate WA
1 0 0 0 1 PWM, phase correct, 8-bit | Ox00FF TOP BOTTOM
2 [0 1 0 PWM, phase correct, &-bit | Ox01FF TOP BOTTOM
3 D D 1 1 PWNM, phase correct. 10-hit | 0x03FF TOP BOTTOM
4 0 1 0 0 cTC OCR1A | Immediate | MAX
5 D 1 0 1 Fast PWM, B-bit O0x00FF | BOTTOM TOP
3 0 1 1 0 Fast PWM, 0-bit 0x01FF | BOTTOM TOP
7 0 1 1 1 Fast PWM, 10-bit 0x03FF | BOTTOM TOP
8 1 0 0 o |PWM.phaseandfrequency | ooy | BoTTOM | BOTTOM
correct
g 1 0 0 1 PWM, phase and frequency | o4 | goTTOM | BOTTOM
correct
10 1 0 1 0 PWNM, phase comrect ICR1 TOP BOTTOM
1 1 0 1 1 PWM., phase comect OCRIA TOP BOTTOM
12 1 1 0 0 cTC ICR1 | Immediate | MAX
13 1 1 0 1 {Reserved) — — Z
14 1 1 1 0 Fast PWM ICR1 | BOTTOM TOP
15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP
910 Q
Q Servo-4
o
\ 55 degC/55 IE-)
e M
L]
r]ja " %6‘
% o
S G Ze
[b]A:[/b ‘:)b ’:1}) t DPins: ~6, ~5; ~9,
~10; ~11, ’ :
W %%
[#]
) T e L &y
| 10 Aaa™ /1025 100 Aaci /100975

[b](1)[/b] In Fig-1, we observe that we can generate PWM signals of desired frequencies and widths
at Dpin: ~6, ~5 of Arduino UNO through the programming of TCNTO (TCO Module) of the MCU. In
this case, we have to write our own codes with strict reference to the data sheets for the bit values of
various PWM related registers.

[b](2)[/b] Similarly, we can generate PWM signals of desired frequencies and widths at Dpin: ~9,
~10 of Arduino UNO through the programming of TCNT1 (TC1 Module) of the MCU.

[b](3)[/b] Similarly, we can generate PWM signals of desired frequencies and widths at Dpin: ~11,
~3 of Arduino UNO through the programming of TCNT2 (TC2 Module) of the MCU.

[img]https:/ /forum.arduino.cc/index.php?action=dlattach;topic=568966.0;attach=274401[/ img]
Figure-1: Generation of PWM signals by programming of the TCX modules of ATmega328 MCU

[b]B:[/b] Generation of PWM signals (fixed frequency and variable width) at DPins: ~6, ~5; ~9, ~10;
~11, ~3 using Arduino commands

[b](1)[/b] In Fig-2, we observe that we can create PWM signals of about 1000 Hz frequency at Dpin:
~6, ~5 of Arduino UNO by executing these Arduino instructions: [b]analogWrite(6, pulseWidth);[/b]
and [b]analogWrite(5, pulseWidth);[/b]. The width of the PWM signal can be dynamically varied by
changing the value of the 8-bit valued 2nd argument (pulseWidth) of the instruction; the argument
can assume direct values from 0x00 to OxFF or from an analog channel after mapping.

[b](2)[/b] Similarly, we can create PWM signals of about 500 Hz frequency at Dpin: ~9, ~10 of
Arduino UNO by executing these Arduino instructions: [b]analogWrite(9, pulseWidth);[/b] and
[b]analogWrite(10, pulseWidth);[/b].

[b](3)[/b] Similarly, we can create PWM signals of about 500 Hz frequency at Dpin: ~11, ~3 of
Arduino UNO by executing these Arduino instructions: [blanalogWrite(11, pulseWidth);[/b] and
[b]analogWrite(3, pulseWidth);[/b].

[img]https:/ /forum.arduino.cc/index.php?action=dlattach;topic=568966.0;attach=274407[/img]
Figure-2: PWM signals of known frequencies using Arduino commands

[b]C:[/b] Generation of PWM Signal at any permissible DPin of UNO of known frequency (50 Hz)
and variable width using [b]Servo.h[/b] Library Functions for stepper servo SG90 and the like
[b](1)[/b] To lock the shaft of the SG90 stepper servo motor at a desired position (say, 90[sup]0[/sup]
from the reference position), we need to maintain a continuous signal of 50 Hz with 2 ms ON-period
and 18 ms OFF-period at the Control Pin of the servo. By varying the ON-period, the shaft position
can also be changed. (Continuous injection of the PWM signal at the Control Pin of the servo is
maintained by the Servo.h Library through interrupts.)

[b](2)[/b] This signal is automatically created and sustained at DPin-X (X = 0 to 19) of the UNO when
the following codes are included in the sketch.

[code]#include<Servo.h>

Servo myServo;

myServo.attach(DPin-X); //DPin-X=0 to 19 with which the Control Pin of the servo is connected.
myServo.write(value); //value determines the ON-period of the 50 Hz PWM signal.[/code]

[b]BTW:[/Db] Is Servo.h Library using TCX Module of the MCU for the generation of the PWM signal
at the Control Pin of the servo? I have no information about it. Probably, it does not utilize the TCX
Module; because, DPin-7 has no relation with any of the TCX Modules; but, we can still drive a servo
(SG90) via DPin-7?

ATme328/ArduinoUNO MCY Fin A
(PD6)OCOA|12 Dpig ®[on] orr
TCO } 980 Hz >t
(PD5)0COB[11 5 1020 us .
< >
(PB1)OC1A[15 0 v
TC1 | (PB2)OCTB[16 10 490Hz 4 -
(PB3)OC2A[17 11 ©] on OFF
TC2 490 H >t
PD3)0C2B|5 3 Z
(PD3) S e < 2040 us >
pwm328

MCU Pin

7 0
OCROA
clkSYS
~ 6]

No
16 MHz > 11 OCOA(PD6) 12

8
/64 | clkTCO
/256
/1024
Ext. OCOB(PD5) .} 11 5|
OCROB
TCO Clock 7 0
Prescaler
No OC1A(PB1) 15 ~9
"
> 8
IkTC1
/64 |-SKTC
1256
/1024 OC1B(PB2) _ 116 ~10
Ext.
15 0
OCR1B
TCT Clock
Prescaler
7 0
OCR2A |—|-|'L
No
2A(PB 17 ~11
M S, PWM2A OC2A(PE3)
/8 0
> /32 | clkTC2
64
/128 _
1956 OC2B(PD3) .} § 3
/1024 8
OCR2B
TC2 Clock 7 0 Ard_uino
Prescaler Dpin-X

PWM
Dwm T

MCU Pin

N 7 0 OCIEAD |
8 [n i ovs —————————»IRQ:0x001C l
J__ S| 6 | G No OCOAPDE), i12 6
S [os [3{r2 > O——>[PwioA] _—
/128, /8
1256 o4 | cktco L 0 TOIE0 |
Y1 Systom Ciock 1256 ———{ TONTO —[TOV0_|—"—"—3IRQ: 0x0020
16 MHz
Prescaler 1024 OCO0B(PD5 1 5
6 | TO(PD4) | Ext © PWMOB (PDS)
d OCIEOB |
CJTCCROA [CJTCCR1A OCRB| L—— /. /3 |RQ:001E
[JTccRoB [CTCCRIB TCO Clock 7 0
[JTIMSKO [TCCRIC Prescaler
[CITCNTO [CEJTCNTIL, H OCIE1A |
[JOCROA [T —1ICRIL, H —————————————— 3 IRQ:0x0016
[C1OCR0B [_T—JOCRIAL, H No 1 oc1APBY) {15 9
C_JTIFRO [T _JOCR1BL, H M PWM1A
7 0 —» s 15 0 TOIE1 |
————A CTIMSK1 clkTC1
164 ——— TCNT1 |—p[TOV1 |—"——3IRQ:0x001A
TCO Registers15 7|:(|JT|FR1 1256 Q:0x
—_— 11024 5 OC1B(PB2) (116 10
11 { T1(PD5) TC1 Registers Ext. PWM1B
> 15 0 OCIE1B |
OCRIB] L— /7 /3 |RQ:0x0018
[ITCCR2A TCT Clock
[CITCCR2B Prescaler
[TCNT2 - 7 0 OCIE2A |
CocrReA [JGTCCR [ocrza] — oc2FA F—"—"—3IRQ:0x000E
[JOCR2B [JASSR No % OC2A(PB3) _ {17 11
CTIMSK2 [IPRR j; 5 PWM2A
CJTFR2 [CICLKPR 532 | oktez T 0 TOlEO
7 0 70 Ly s ——»{ToNT2 —p[Tov2 |—"— - IRa0x0012 |—||'|
TC2 Registers ~ TCO/TC1/TC2 ggg OC2B(PD3) oi 5 3
Common Registers
9 1024 OCIE2B |
[ocraB] OC2FB |—"—"—1RQ:0x0010
TC2 Clock 7 0 Arduino
Prescaler Dpin-X PWM
tc "
Signals
Name: TIFR1
Bit T 6 5 4 3 2 1 0
ICF OCFB OCFA TOWV 1
Access RW RW RW RW
Reset 0 0 0 0
ATmega328P in Arduino UNO Kit
toxz System Clock Prescaler TCA Clock Prescal
joCl rescaler
th 15 87 0 TOIE1 I-bit
fosc A clksYs | " clkTC1 Z
_z.... > TOV1 —> IRQ: 001Ah
9 X1 § 16 MH v 2 8 MHz 31250 Hz
. _= T | [TCNT1H TCNTIL
- g8 18
P =] 50 — TCNT1
e £% 116
w0ixre |~ % 132 15 87 0
S‘ 164 | TCCR1A
28 < TCCR1B
1256 . I TCNT1
P - ICR1
£ = OCR1A
a CLKPR TCCR1B OCR1B
11.:T1(PD5) TIMSK1
TIFR1

cuattinyds

fose | A clksYs A clkTCl
2 {aTAL s | WHz"| * *
= 2 2
l T3] aa—
- [B 255 !
FEE 5 e | TERTT
e'|' E® gg | doed]
3 lutare
5 54 !
28
e -~ ME384
CLKPR TCCRY

System Oock Prescaler

T Clock Prescaler

TOWV

TOIET |-kt

—" —* |RE:0004h

10

