
1

Section-9: Pulse Width Modulated Signal

9.1 Introduction
In one cycle period of a digital signal, there is an ON-period and an OFF-period (Fig-9.1); where, the
ON-period is known as ‘duty cycle’ or ‘Pulse Width’ or ‘Mark’ and the OFF-period is known as
‘Space’. In Fig-9.1a, we have a 10 kHz signal of which the duty cycle is 50%. When the ON-period of
the signal changes, we get a signal what is known as ‘Pulse Width Modulated (PWM)’ signal (Fig-
9.1b). The PWM signal is widely used to regulate the speed of a servo motor or to position the shaft of
a stepper motor.

 Figure-9.1a: PWM signal with 50 µs pulse width Figure-9.1b: PWM signal with 68 µs pulse width

9.2 Pre-defined PWM Signals in Arduino UNO

Figure-9.2: Pre-defined PWM signals of Arduino UNO

(1) In Arduino UNO, the execution of this instruction: analogRead(3, dutyCycle) automatically
delivers 490 Hz PWM signal at DPin-3 (Fig-2). The duty cycle (ON-period) of the signal can be
varied from 0% to 100% by changing the value of arg2 (dutyCycle, an 8-bit variable) from 0x00
to 0xFF.
analogWrite(DPin-n, arg2); //arg1 = DPin-n = 3, 11, 10, 9, 5, 6; arg2 is an 8-bit value
 analogWrite(3, 0x45); //duty cycle = 2040/256 * 0x45  612 µs (30%)

void setup()
{

analogWrite(3, 0x45);
}

void loop()
{

}

If we connect an oscilloscope at DPin-3 of the UNO, we will see a 490 Hz square wave signal
with about 612 µs ON-period.

(2) As indicated in Fig-2, we can generate four 490 Hz PWM signals at DPin-3, 11, 10, 9 and two 980
PWM signals at DPin-5, 6 by executing the analogWrite() function. There is no need of any
initialization. The analogWrite() automatically assigns TC0 for DPin-5, 6; TC1 for DPin-9, 10; TC2
for DPin-3, 11 for the generation of the respective PWM signals. The DPins are also
automatically configured to work as output lines.

(PD3)OC2B
(PB3)OC2A

(PB2)OC1B
(PB1)OC1A

(PD5)OC0B
(PD6)OC0A

5
17

16
15

11
12

DPin
6
5

9
10

11
3

ATme328/ArduinoUNO

TC2

pwm328

TC0

TC1

980 Hz

490 Hz

490 Hz

MCU Pin

t

v

1020 us

ON OFF

t

v

2040 us

ON OFF

A

B

100 us
t

v

50 us

50 us
100 us

t

v

68 us

2

(3) The value of arg2 of the analogWrite(DPin-n, arg2) function can be assigned directly (a fixed
value) or through an external user controlled variable to change/regulate the duty cycle of the
PWM signal. In the following example, the duty cycle of the PWM signal of DPin-3 changes as
the voltage value of the wiper point of Pot (potentiometer) changes. The affect of the pulse width
change can be visualized in the continuous dimming/intensifying of LED1 as the Pot value is
changed.

Figure-9.3: 490 Hz PWM signal with varying duty cycle

(a) Connect R1-LED1 circuit and Pot circuit with UNO as per Fig-9.3.
(b) Upload the following sketch.

Byte dutyCycle = 0;
int x;

void setup()
{

analogWrite(3, dutCycle);
}

void loop()
{

x = analogRead(A0);
dutyCycle = map(x, 0, 1023, 0, 255);//map() function compresses scale (0,1023)(0,255)
analogWrite(3, dutCycle); //dutyCycle value is updated
delay(1000); //test interval; the affect will appear after 1-sec

}
(c) Slowly rotate Pot and observe that the intensity of LED1 changes which indicates that duty

cycle of the PWM signal is changing.
(4) A 50 Hz PWM signal can also be generated using Servo.h Library. This signal is useful to

position the shaft of stepper motor like TOWER PPRO SG90 (Fig-9.4). The PWM signal becomes
available at any valid DPin when the following codes are uploaded in the UNO.

Figure-9.4: Tower Pro SG90 stepper motor

#include <Servo.h>
Servo myservo; // create servo object to control a servo

UNO

3 R1 = 470R LED1
GND

A0

5V

GND

Pot
5k

pwm

3

void setup()
{
 Myservo.attach(2); //PWM signal at Din-2
 myservo.write(0x45); //at DPin-2, there is 50 Hz PWM signal with ON-period 20/255*69 = 5 ms
}

void loop()
{

}
(a) Remove R1-LED1 circuit from DPin-2 of Fig-9.3,
(b) Connect servo motor of Fig-9.4 with at DPin-2 of the UNO of Fig-9.3.
(c) Upload the following sketch:

#include <Servo.h>
Servo myservo; // create servo object to control a servo

int potpin = A0; // analog pin used to connect the potentiometer
byte val; // variable to read the value from the analog pin

void setup()
{
 myservo.attach(3); // attaches the servo on pin 9 to the servo object
}

void loop()
{
 val = analogRead(potpin); // reads value of Pot (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 180); // scale it to use with servo (value between 0 and 180)
 myservo.write(val); // sets the servo position according to the scaled value
 delay(15); // waits for the servo to get there
}

(d) Slowly turn Pot and check that the shaft position of the servo motor changes accordingly.

9.3 Dual Slope Phase Correct (Mode-10) PWM Signal using TC1

 Figure-9.5: Phase correct Mode-10 PWM signal using TC1

 Figure-9.6: PWM Hardware of TC1 Module

ICR1(TOP)

OCR1A

TCNT1
C

A
E

G

I

B D F H

J

One Period

Duty cycle

t

t

V
(DPin-9)

OC1A/PWM

ICF1

OCF1A OCF1A

TOV1

pwmMode10 One Period

clkSYS
16 MHz

015
TCNT1

= PWM1A Generator

= PWM1B Generator

0

15

15

0

clkTC1

TC1 Clock
Prescaler

OC1A(PB1)

OC1B(PB2) 16

15No
/1
/8

/64
/256

/1024
Ext.

~ 10

~ 9

OCR1B

OCR1A ICR1

ICR1

015 15

015

OCF1A

OCF1B

pwmTC1

ICF1
ICF1

TOV1

4

(1) In Fig-9.5, we observe that there is a ‘periodic digital signal’ at DPin-9 of the Arduino UNO. This
is a PWM signal as its duty cycle (pulse width) can be changed. The period of the PWM signal is
confined within the rising and falling slopes of the reference signal ACE and hence the PWM
signal is known as ‘dual slope’ signal. Why is it called ‘phase correct’?

(2) Frequency Determination: The
(a) Frequency of the PWM signal is the inverse of the period of the signal. The period (as we
can see in Fig-9.5) is equal to the time required for the TCNT1 Register to ‘count up from point-A
(initial count = 0) to point-C (count = content of ICR1 Register)’ + ‘count down from point-C
(initial count = content of ICR1 Register) to point-E (final count = 0)’. Based on this principle, let
us find the equations for the frequency and the duty cycle of the PWM signal as a function of
clkTC1 (driving clock of TC1, Fig-9.6), N (prescale divider), ICR1 (content of ICR1 Register =
TOP value), and OCR1A (content of OCR1A Register).

(b) With initial value of 0x0000, the TCNT1 Register begins counting up from point-A to point-
C along the rising slope at clocking speed of clkTC1. When the content of TCNT1 Register
becomes equal to the content of OCR1A Register at point-B, the logic level of OC1A line at DPin-
9 assumes LOW state and remains LOW until point-D arrives. TCNT1 continues counting up
from Point-B until its content becomes equal to the content of ICR1 Register at point-C.

(c) Now, the TCNT1 starts counting down from point-C towards point-E along the falling
slope at the same clocking speed of clkTC1. When the content of TCNT1 Register becomes equal
to the content of OCR1A Register at point-D, the logic level of OC1A line assumes HIGH state
and remains HIGH until point-F arrives. We have got one period of the PWM Wave over the
points: B, D, and F (or can be said as: over the points: A, C, and E); where, BD is OFF-period and
DF is the ON-period/dutyCycle. As the PWM signal involves 2 slopes, it is called dual-slope
PWM signal. It is also known as ‘phase correct’ PWM signal. Why is it called phase correct PWM
signal?

(d) Now :
 Period (T) of the PWM signal = Time-AC + Time-CE; where,
Time-AC = Time (for TCNT1) to count up from point-A to point-C = ICR1*1/clkTC1
Time-CE = Time (for TCNT1) to count down from point-C to point-E = ICR1*1/clkTc1

Period (T) = Time-AC + Time-CE = ICR1*1/clkTC1 + ICR1*1/clkTC1 = 2*ICR1*1/clkTC1
fOC11APCPWM (frequency of the phase correct PWM signal) = 1/Period = clkcTC1/2*ICR1
fOC11APCPWM = (clkSYS/N)/(2*ICR1) = clckSYS/(2*N*ICR1) = clckSYS/(2*N*TOP)

TOP has been defined as the highest value in the counting sequence.
BOTTOM has been defined as the lowest value (0x0000) in the counting sequence.

The frequency of the PWM signal can be changed by changing the content of ICR1 Register. The
duty cycle can be changed by changing the content of OCR1A Register and OCR1B Register.

(3) Duty Cycle Determination: From the above discussion and from Fig-9.5, it appears that the duty
cycle is NIL (0%) when the content of OCR1A Register is 0x0000 and the duty cycle id FULL
(100%) when the content of OCR1A Register is equal to the content of ICR1 Register (the TOP
value). For a given frequency of the PWM signal, the duty cycle can be varied by changing the
content of OCR1A Register.

5

(4) Flags Activation:
(a) At point-B/D of Fig-9.5, compare match occurs between TCNT1 and OCR1 Registers when
their contents are equal; as a result, the ‘Output Compare A Match Flag (OCF1A)’ of TIFR1
Register becomes HIGH; this flag can be used to interrupt the MCU after putting 1s into the
OCIE1A bit of TIMSK1 and I bit of SREG Registers. After interruption, the MCU vectors at
0x0016 from where it jumps at the following handler to accomplish interrupt services. The
OCF1A flag is automatically cleared when the MCU vectors at the ISR; else, it can cleared by
writing LH (bitSet(TIFR1, 1)) at this bit position.
ISR(TIMER1_CMPA_vect)
{

}

(b) At point-C of Fig-9.5, compare match occurs between TCNT1 and ICR1 Registers when
their contents are equal; as a result, the ‘Input Capture Flag (ICF1)’ of TIFR1 Register becomes
HIGH; this flag can be used to interrupt the MCU after putting 1s into the ICIE1A bit of TIMSK1
and I bit of SREG Registers. After interruption, the MCU vectors at 0x0014 from where it jumps
at the following handler to accomplish interrupt services. The ICF1 flag is automatically cleared
when the MCU vectors at the ISR; else, it can cleared by writing LH (bitSet(TIFR1, 5)) at this bit
position.
ISR(TIMER1_CAPT_vect)
{

}

(c) At point-E of Fig-9.5, the content of the TCNT1 Register becomes zero; as a result, the TOV1
flag of the TIFR1 Register becomes HIGH; this flag can be used to interrupt the MCU after
putting 1s into the TOIE1 bit of TIMSK1 and I bit of SREG Registers. After interruption, the
MCU vectors at 0x001A from where it jumps at the following handler to accomplish interrupt
services. The TOV1 flag is automatically cleared when the MCU vectors at the ISR; else, it can
cleared by writing LH (bitSet(TIFR1, 0)) at this bit position.
ISR(TIMER1_OVF_vect)
{

}

9.4 Sketch for 20 kHz dual-slope phase correct PWM signal using TC1 in Mode-10

9.5 Exercises

6

Waveform Generation Mode Bit Description:

9.10 Questions

[b]A:[/b] Generation of PWM signals (variable frequency and variable width) at DPins: ~6, ~5; ~9,
~10; ~11, ~3 using TC (Time/Counter) Modules of ATmega328P

7

[b](1)[/b] In Fig-1, we observe that we can generate PWM signals of desired frequencies and widths
at Dpin: ~6, ~5 of Arduino UNO through the programming of TCNT0 (TC0 Module) of the MCU. In
this case, we have to write our own codes with strict reference to the data sheets for the bit values of
various PWM related registers.

[b](2)[/b] Similarly, we can generate PWM signals of desired frequencies and widths at Dpin: ~9,
~10 of Arduino UNO through the programming of TCNT1 (TC1 Module) of the MCU.

[b](3)[/b] Similarly, we can generate PWM signals of desired frequencies and widths at Dpin: ~11,
~3 of Arduino UNO through the programming of TCNT2 (TC2 Module) of the MCU.

[img]https://forum.arduino.cc/index.php?action=dlattach;topic=568966.0;attach=274401[/img]
Figure-1: Generation of PWM signals by programming of the TCX modules of ATmega328 MCU

[b]B:[/b] Generation of PWM signals (fixed frequency and variable width) at DPins: ~6, ~5; ~9, ~10;
~11, ~3 using Arduino commands
[b](1)[/b] In Fig-2, we observe that we can create PWM signals of about 1000 Hz frequency at Dpin:
~6, ~5 of Arduino UNO by executing these Arduino instructions: [b]analogWrite(6, pulseWidth);[/b]
and [b]analogWrite(5, pulseWidth);[/b]. The width of the PWM signal can be dynamically varied by
changing the value of the 8-bit valued 2nd argument (pulseWidth) of the instruction; the argument
can assume direct values from 0x00 to 0xFF or from an analog channel after mapping.

[b](2)[/b] Similarly, we can create PWM signals of about 500 Hz frequency at Dpin: ~9, ~10 of
Arduino UNO by executing these Arduino instructions: [b]analogWrite(9, pulseWidth);[/b] and
[b]analogWrite(10, pulseWidth);[/b].

[b](3)[/b] Similarly, we can create PWM signals of about 500 Hz frequency at Dpin: ~11, ~3 of
Arduino UNO by executing these Arduino instructions: [b]analogWrite(11, pulseWidth);[/b] and
[b]analogWrite(3, pulseWidth);[/b].

[img]https://forum.arduino.cc/index.php?action=dlattach;topic=568966.0;attach=274407[/img]
Figure-2: PWM signals of known frequencies using Arduino commands

[b]C:[/b] Generation of PWM Signal at any permissible DPin of UNO of known frequency (50 Hz)
and variable width using [b]Servo.h[/b] Library Functions for stepper servo SG90 and the like
[b](1)[/b] To lock the shaft of the SG90 stepper servo motor at a desired position (say, 90[sup]0[/sup]
from the reference position), we need to maintain a continuous signal of 50 Hz with 2 ms ON-period
and 18 ms OFF-period at the Control Pin of the servo. By varying the ON-period, the shaft position
can also be changed. (Continuous injection of the PWM signal at the Control Pin of the servo is
maintained by the Servo.h Library through interrupts.)

[b](2)[/b] This signal is automatically created and sustained at DPin-X (X = 0 to 19) of the UNO when
the following codes are included in the sketch.
[code]#include<Servo.h>
Servo myServo;

8

myServo.attach(DPin-X); //DPin-X=0 to 19 with which the Control Pin of the servo is connected.
myServo.write(value); //value determines the ON-period of the 50 Hz PWM signal.[/code]

[b]BTW:[/b] Is Servo.h Library using TCX Module of the MCU for the generation of the PWM signal
at the Control Pin of the servo? I have no information about it. Probably, it does not utilize the TCX
Module; because, DPin-7 has no relation with any of the TCX Modules; but, we can still drive a servo
(SG90) via DPin-7?

(PD3)OC2B
(PB3)OC2A

(PB2)OC1B
(PB1)OC1A

(PD5)OC0B
(PD6)OC0A

5
17

16
15

11
12

DPin
6
5

9
10

11
3

ATme328/ArduinoUNO

TC2

pwm328

TC0

TC1

980 Hz

490 Hz

490 Hz

MCU Pin

t

v

1020 us

ON OFF

t

v

2040 us

ON OFF

A

B

clkSYS
16 MHz

TC0 Clock
Prescaler

clkTC0

0

7
TCNT0

= PWM0A

= PWM0B

OCR0A

OCR0B

015
TCNT1

= PWM1A

= PWM1B

7

7

0

0

15

15

0

clkTC1

TC1 Clock
Prescaler

0

TC2 Clock
Prescaler

clkTC2

0

7
TCNT2

= PWM2A

= PWM2B

OCR2A

OCR2B

7

7

0

0

pwm

OC2A(PB3) 17

5

OC1A(PB1)

OC1B(PB2) 16

15

OC0A(PD6)

OC0B(PD5) 11

12

No
/1
/8
/32
/64

/128
/256

/1024

OC2B(PD3)

No
/1
/8

/64
/256

/1024
Ext.

No
/1
/8
/64

/256
/1024
Ext.

Arduino
Dpin-X

MCU Pin

~ 3

~ 11

~ 10

~ 9

~ 5

~ 6

OCR1B

OCR1A

PWM
Signals

9

Y1
16 MHz

Osc

/1, /2, /4
/8, /16

/32, /64,
/128,
/256

System Clock
Prescaler

fo
sc

16
M

H
z

clkSYS
16 MHz

TC0 Clock
Prescaler

clkTC0

0

7
TCNT0 TOV0

= PWM0A

= PWM0B

OCR0A

OCR0B

015
TCNT1 TOV1

= PWM1A

= PWM1B

7

7

0

0

15

15

0

clkTC1

TC1 Clock
Prescaler

0

TC2 Clock
Prescaler

clkTC2

0

7
TCNT2 TOV2

= PWM2A

= PWM2B

OCR2A

OCR2B

7

7

0

0

tc

OC2A(PB3) 17

TOIE1

5

OC1A(PB1)

OC1B(PB2) 16

15

OC0A(PD6)

OC0B(PD5) 11

12

IRQ: 0x0020

IRQ:0x001C

IRQ:001E

IRQ:0x0016

IRQ:0x0018

IRQ:0x000E

IRQ:0x0010

No
/1
/8
/32
/64

/128
/256
/1024 IOCIE2B

I

I

I

I

I

I

I

IOCIEA0

TOIE0

OCIE2A

TOIE0
IRQ:0x0012

IRQ:0x001A

OC2B(PD3)

OCIE1B

OCIE1A

OCIE0B
T0(PD4)6

T1(PD5)11

No
/1
/8

/64
/256

/1024
Ext.

No
/1
/8
/64

/256
/1024
Ext.

Arduino
Dpin-X

MCU Pin

3

11

10

9

5

6

OCR1B

OCR1A

07
TIFR0
OCR0B
OCR0A
TCNT0
TIMSK0
TCCR0B
TCCR0A

OCR1BL, H
OCR1AL, H
ICR1L, H
TCNT1L, H
TCCR1C
TCCR1B
TCCR1A

TIFR1
TIMSK1

07
TIFR2
TIMSK2
OCR2B
OCR2A
TCNT2
TCCR2B
TCCR2A

015 7TC0 Registers

TC1 Registers

TC2 Registers

GTCCR
ASSR
PRR

07

TC0/TC1/TC2
Common Registers

PWM
Signals

CLKPR

OC2FA

OC2FB

XT!

XT210

9

Y1
16

M
Hz

In
te

rn
al

Cr
ys

ta
lO

sc
ill

at
or

fosc
16 MHz

ATmega328P in Arduino UNO Kit

System Clock Prescaler

/1

DP
in

-5

/2
/4
/8
/16
/32
/64
/128
/256

clkSYS

8 MHz

/1

/8
/64
/256
/1024

TC1 Clock Prescaler

clkTC1

TCNT1
TCNT1LTCNT1H

07815

TOV1

TOIE1 I-bit

IRQ: 001Ah

11 T1 (PD5)
TCCR1BCLKPR

tcxz

31250 Hz

TCCR1A
07815

TCCR1B
TCNT1
ICR1
OCR1A
OCR1B
TIMSK1
TIFR1

10

