In my few years at the Electronics... I don't believe I have Ever seen a board fail due to too many Bypasses,, But I've seen a bunch that failed because of too few and more than a few of mine suffered that initial condition.
Having said that I utterly fail to find any sense in deciding how few you can get away with using in a design. The parts cost much less than the possible time figuring out why it doesn't behave "exactly" the way you thought it should. MY Very simple Rule is a 100 to 330 uF electrolytic at the Vcc connection, a .1uF cap per Ic and a 10uF cap for any board and increased by one every 3 IC's.
What Hasn't been mentioned well here is the inductance of the power supply leads and more important the traces carrying power on the PCBI. It's like a whole series of little inductors... in series with both power and grounds distributed across a board.
The Very best boards I Ever worked on had 4 layers top and bottom were grounded, more as an EMI shield that anything else, there was a Vcc plane, Split as necessary for ADC's and other more sensitive or low noise devices and an internal ground plane, Granted they were early Military stuff but there were no board issues and they were high speed synthesized radio PCB's... with 100 Mhz system clocks.
My design philosophy is very simple... You Don't have to populate the pads and holes... But it is sure hard to "Stick" em on later.
Place the parts on the board or at least the footprints... Stuff them all on the first copy and then remove the ones you think... extra, and see that your power supply is clean with an O'scope... If not start putting them back until it is.
Doc
Doc