Constant current power supplies

westfw:
I'm pretty sure that a constant current switchmode power supply (LED Driver) and a constant voltage switchmode power supply (cell phones) are awfully similar. One would take feedback from the load voltage, and the other would take feedback from current sense resistor om series with the load. Any switchmode chip ought to be able to implement either type of supply with minor changes in wiring.

In "Lab" power supplies, "CCCV" generally means "constant voltage with a current LIMIT", and defines the way the supply behaves when the current limit is exceeded. This is supported by the TND329 datasheet:

(section 5: "Circuit operation")
For output currents less than 1 A the circuit performs as a constant voltage source. ... Although very simple, this current sense circuit will provide a constant current output of approximately 1 A all the way down to an output voltage of 1 V.

In other words, a "CCCV supply" provides a constant voltage up to the current limit, and then decreases the voltage as needed not to exceed the desired current. (as opposed to simpler regulators, that might just shut down in over-current situations.) Some Li-ion battery charging chips assume that the power supply has a current limit built-in to it, but a cell phone supply will normally operate in a constant voltage mode.

In general, that's not quite the behavior you'd want from an LED driver style of CC supply. In that case, you want the voltage to go to any value needed to force the target current through the load. This permits you to use varying numbers of LEDs in series in your light, for instance. I haven't studied the current flood of "LED driver" chips to see how they're different from other switchmode chips; there may be other simplifying factors that permit a cheaper design and justify having a separate chip (oh, like not needing to provide clean DC, for instance.)

Yes, you have explained it all very well and better then me I' sure. There is a difference between a DC power module that has automatic current limiting protection and a true constant current regulator. I'm just trying to make sure that people understand that ohms law is still applicable here no matter what name a DC power module uses. :wink:

Lefty