Good trade-off.
Yes, if the application is fine with a slower PWM, that saves switching losses and the other losses associated with it like driver current losses.
The 1N4001 is not a fast switching diode. It is a garden variety line frequency rectifier, but it switches On fast enough to absorb most inductive transients. What dlloyd is referring to is more of an issue with the speed of magnetic field collapse in a coil. This is an issue with relays as a low clamp voltage can cause contact burning as it slows release. In that case, adding a resistor in series with the clamping diode can speed that up.
For a motor, it is going to generate a voltage as it continues to turn, but it will be in the same polarity as the voltage applied and not spike up any higher. Well, except a motor is also made of inductors, so I'd still keep the diode.
For your MOSFET power calculations, I'd say 2^2 rather than 4. It is clearer, then, that the number is 2A squared.
I try, as a general rule, to keep device temperatures under 75C when possible. 150C may be a maximum, but by mentioning, you may be unintentionally giving people the impression that it doesn't really have any drawbacks.