Fusionner 2 codes arduino

Bonjour,

Moi et des camarades sommes sur un projet en Terminale STI2D qui compte coef 12 au BAC, le but de ce projet pour notre groupe consiste à programmer et concevoir une douche économique, pour cela nous utilisons un capteur de débit et un capteur de température afin de connaitre le cout de la douche en direct et la consommation également en direct.

Nous nous sommes aider des fiches techniques et différents tutoriel pour effectuer les branchements et faire fonctionner au mieux ceux-ci,

nous avons branché les 2 capteurs sur une planche relier à la carte arduino :

Seulement, nous avons nos 2 codes, les 2 fonctionnent bien séparément, mais j'arrive pas à les fusionner, j'ai tenté plusieurs recherches sur internet mais j'ai pas réussi à trouver ce que je voulais, sauriez-vous m'aidez?

Voici les 2 codes :

Capteur de débit :

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

void setup()
{
  
  // Initialize a serial connection for reporting values to the host
  Serial.begin(38400);
   
  // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

/**
 * Main program loop
 */
void loop()
{
   
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
    Serial.print("Debit: ");
    Serial.print(int(flowRate));  // Print the integer part of the variable
    Serial.print(".");             // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac = (flowRate - int(flowRate)) * 10;
    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
    Serial.print("L/min");
    // Print the number of litres flowed in this second
    Serial.print("    Quantite d'eau a l'instant : ");             // Output separator
    Serial.print(flowMilliLitres);
    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("    Consommation d'eau au totale: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }
}

/*
Insterrupt Service Routine
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;
}

Capteur de température :

#include <OneWire.h> 

int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2

//Temperature chip i/o
OneWire ds(DS18S20_Pin); // on digital pin 2

void setup(void) {
 Serial.begin(9600);
}

void loop(void) {
 float temperature = getTemp(); //will take about 750ms to run
 Serial.println(temperature);
 
}


float getTemp(){
 //returns the temperature from one DS18S20 in DEG Celsius

 byte data[12];
 byte addr[8];

 if ( !ds.search(addr)) {
   //no more sensors on chain, reset search
   ds.reset_search();
   return -1000;
 }

 if ( OneWire::crc8( addr, 7) != addr[7]) {
   Serial.println("CRC is not valid!");
   return -1000;
 }

 if ( addr[0] != 0x10 && addr[0] != 0x28) {
   Serial.print("Device is not recognized");
   return -1000;
 }

 ds.reset();
 ds.select(addr);
 ds.write(0x44,1); // start conversion, with parasite power on at the end
 
 delay(750); // Wait for temperature conversion to complete

 byte present = ds.reset();
 ds.select(addr);  
 ds.write(0xBE); // Read Scratchpad

 
 for (int i = 0; i < 9; i++) { // we need 9 bytes
  data[i] = ds.read();
 }
 
 ds.reset_search();
 
 byte MSB = data[1];
 byte LSB = data[0];

 float tempRead = ((MSB << 8) | LSB); //using two's compliment
 float TemperatureSum = tempRead / 16;
 
 return TemperatureSum;
 
}

Merci beaucoup, toute aide est la bienvenue.

Bonjour,

Tu parts du 1er programme

Tu ajoutes les déclarations du 2eme programme après les déclarations du 1er

Tu ajoutes la lecture de température à la fin de la loop

float temperature = getTemp(); //will take about 750ms to run
Serial.println(temperature);

Tu ajoutes la fonction float getTemp() à la fin du fichier

hello
le code du debitmetre utilise les interruptions, considérons donc que D2 lui est réservé
le code de la température utilise lui aussi D2, mais ce n'est pas fixe, tu peux mettre D4 ou autre du moment que tu fais suivre le fil de retour de la sonde.

Tout d'abord merci pour vos réponses,

J'en suis donc arrivé à ce code :

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount; 

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

#include <OneWire.h>

int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2

//Temperature chip i/o
OneWire ds(DS18S20_Pin); // on digital pin 2


void setup()
{
 
  // Initialize a serial connection for reporting values to the host
  Serial.begin(9600);
   
  // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
 
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

/**
 * Main program loop
 */
void loop()
{
   
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  {
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
       
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
   
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
   
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
   
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
     
    unsigned int frac;
   
    // Print the flow rate for this second in litres / minute
    Serial.print("Debit: ");
    Serial.print(int(flowRate));  // Print the integer part of the variable
    Serial.print(".");             // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac = (flowRate - int(flowRate)) * 10;
    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
    Serial.print("L/min");
    // Print the number of litres flowed in this second
    Serial.print("    Quantite d'eau a l'instant : ");             // Output separator
    Serial.print(flowMilliLitres);
    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("    Consommation d'eau au totale: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL");

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
   
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }
}

/*
Insterrupt Service Routine
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;

}


float getTemp(){
 //returns the temperature from one DS18S20 in DEG Celsius

 byte data[12];
 byte addr[8];

 if ( !ds.search(addr)) {
   //no more sensors on chain, reset search
   ds.reset_search();
   return -1000;
 }

 if ( OneWire::crc8( addr, 7) != addr[7]) {
   Serial.println("CRC is not valid!");
   return -1000;
 }

 if ( addr[0] != 0x10 && addr[0] != 0x28) {
   Serial.print("Device is not recognized");
   return -1000;
 }

 ds.reset();
 ds.select(addr);
 ds.write(0x44,1); // start conversion, with parasite power on at the end
 
 delay(750); // Wait for temperature conversion to complete

 byte present = ds.reset();
 ds.select(addr); 
 ds.write(0xBE); // Read Scratchpad

 
 for (int i = 0; i < 9; i++) { // we need 9 bytes
  data[i] = ds.read();
 }
 
 ds.reset_search();
 
 byte MSB = data[1];
 byte LSB = data[0];

 float tempRead = ((MSB << 8) | LSB); //using two's compliment
 float TemperatureSum = tempRead / 16;
 
 return TemperatureSum;
 
}

float temperature = getTemp(); //will take about 750ms to run
Serial.println(temperature);

}


float getTemp()

J'ai corrigé les erreurs éventuelle seulement il y en a une où je bloque c'est au Serial.print où ils me disent

" exit status 1
'Serial' does not name a type"

J'ai vu avec mon professeur de SIN pour pouvoir résoudre cette erreur, on as regardé sur le site d'arduino les références pour Print mais nous n'avons pas trouvé, une solution?

Merci !

Formates ton code avec CTRL T et tu verras que les lignes

float temperature = getTemp(); //will take about 750ms to run
Serial.println(temperature);

sont en dehors de la loop() et même en dehors de toute fonction.