I've searched around the internet for days and i couldn't get a stable reading from these sensors, they are just messed up like:
Gx:2.03 | Gy:-0.13 | Gz:-0.39
Ax:6.00 | Ay:-26.00 | Az:511.00
psi:-110.75 | theta:4.04 | phi:-58.83
And changing quite randomly, though they do respond to rotating and moving the chip
I'd be eternally grateful for any advice, here goes the small code I'm currently using:
#include "Wire.h"
#define GYRO_ADDR 0x68
#define ACCEL_ADDR 0x53
#define DEG2RAD 0.017453292512f
#define RAD2DEG 57.29577951309f
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
float q[3];
float q0, q1, q2, q3;
float exInt, eyInt, ezInt;
float twoKp, twoKi;
float integralFBx, integralFBy, integralFBz;
float now, lastupdate, samplefreq;
float offset[] = {0,0,0};
void setup()
{
q0 = 1.0f;
q1 = q2 = q3 = 0.0f;
exInt = eyInt = ezInt = 0.0;
twoKp = 1.0f;
twoKi = 0.2f;
now = lastupdate = 0;
Serial.begin(9600);
Wire.begin();
delay(50);
cbi(PORTC, 4);//disable internal
cbi(PORTC, 5);//pullups
Serial.print("Initiating gyroscope and accelerometer... ");
init_gyro();
init_accel();
delay(1000);
Serial.println("done.");
Serial.print("Calibrating gyroscope... ");
zero_gyro();
Serial.println("done.");
Serial.print("Offsets are: ");
Serial.print(offset[0]);
Serial.print(", ");
Serial.print(offset[1]);
Serial.print(", ");
Serial.print(offset[2]);
Serial.println(".");
delay(3000);//debug
Serial.print(27, BYTE);
Serial.print("[2J");
}
void writeto(int dev, byte addr, byte val)
{
Wire.beginTransmission(dev);
Wire.send(addr);
Wire.send(val);
Wire.endTransmission();
}
void readfrom(byte device, byte fromaddr, int num, byte result[])
{
Wire.beginTransmission(device);
Wire.send(fromaddr);
Wire.endTransmission();
Wire.beginTransmission(device);//*
Wire.requestFrom((int)device,num);
int i = 0;
while(Wire.available()) {
result[i]= Wire.receive();
i++;
}
Wire.endTransmission();//*
}
void init_gyro()
{
writeto(GYRO_ADDR,0x3E,0x80);//reset
writeto(GYRO_ADDR,0x3E,0x01);//clock = xgyroref
writeto(GYRO_ADDR,0x15,0x00);//sample rate divide = 1
writeto(GYRO_ADDR,0x16,0x18);//2000dg/s, low pass filter 256hz, internal sample rate = 8khz
writeto(GYRO_ADDR,0x17,0x00); //no interrupt used
}
void init_accel()
{
//writeto(ACCEL_ADDR, 0x2D, 0x00);//wake
//writeto(ACCEL_ADDR, 0x2D, 0x10);//autosleep
//writeto(ACCEL_ADDR, 0x2C, 0x0C);//400hz
//writeto(ACCEL_ADDR, 0x31, 0x01);//data format
writeto(ACCEL_ADDR, 0x2D, 0x08);//start
}
void zero_gyro()
{
float xyz[3];
float tmpoffset[] = {
0,0,0 };
for(int i=0; i < 250; i++) {
delay(8);
read_gyro(xyz);
tmpoffset[0] += xyz[0];
tmpoffset[1] += xyz[1];
tmpoffset[2] += xyz[2];
}
offset[0] = tmpoffset[0]/250;
offset[1] = tmpoffset[1]/250;
offset[2] = tmpoffset[2]/250;
}
void read_accel(float result[])
{
byte buffer[6];
readfrom(ACCEL_ADDR, 0x32,6, buffer);
result[0] = ((((int)buffer[1])<<8)|buffer[0]);
result[1] = ((((int)buffer[3])<<8)|buffer[2]);
result[2] = ((((int)buffer[5])<<8)|buffer[4]);
}
void read_gyro(float result[])
{
byte buffer[6];
readfrom(GYRO_ADDR,0x1D,6,buffer);
result[0] = ((((int)buffer[0])<<8)|buffer[1]) - offset[0];
result[1] = ((((int)buffer[2])<<8)|buffer[3]) - offset[1];
result[2] = ((((int)buffer[4])<<8)|buffer[5]) - offset[2];
}
void AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az)
{
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f;
float qa, qb, qc;
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
if((ax != 0.0f) && (ay != 0.0f) && (az != 0.0f)) {
float halfvx, halfvy, halfvz;
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
halfex += (ay * halfvz - az * halfvy);
halfey += (az * halfvx - ax * halfvz);
halfez += (ax * halfvy - ay * halfvx);
}
if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) {
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / samplefreq);
integralFBy += twoKi * halfey * (1.0f / samplefreq);
integralFBz += twoKi * halfez * (1.0f / samplefreq);
gx += integralFBx;
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f;
integralFBy = 0.0f;
integralFBz = 0.0f;
}
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
gx *= (0.5f * (1.0f / samplefreq));
gy *= (0.5f * (1.0f / samplefreq));
gz *= (0.5f * (1.0f / samplefreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
float invSqrt(float number) {
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f375a86 - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
return y;
}
void get_quaternion(float g[], float a[])
{
now = micros();
samplefreq = 1.0/((now-lastupdate)/1000000.0);
lastupdate = now;
AHRSupdate(g[0]/14.357*DEG2RAD, g[1]/14.357*DEG2RAD, g[2]/14.357*DEG2RAD,
a[0]*0.0078, a[1]*0.0078, a[2]*0.0078);
q[0] = q0;
q[1] = q1;
q[2] = q2;
q[3] = q3;
}
void get_euler_angles(float angles[])
{
angles[0] = atan2(2*q[1]*q[2]-2*q[0]*q[3], 2*q[0]*q[0]+2*q[1]*q[1]-1)*RAD2DEG;//psi
angles[1] = -asin(2*q[1]*q[3]+2*q[0]*q[2])*RAD2DEG;//theta
angles[2] = atan2(2*q[2]*q[3]-2*q[0]*q[1], 2*q[0]*q[0]+2*q[3]*q[3]-1)*RAD2DEG; // phi
}
void get_angles(float angles[])
{
float e[3];
get_euler_angles(e);
angles[0] = e[0];
angles[1] = e[1];
angles[2] = e[2];
if(angles[0] < 0) angles[0] += 360;
if(angles[1] < 0) angles[1] += 360;
if(angles[2] < 0) angles[2] += 360;
}
void getYawPitchRoll(float * ypr) {
float gx, gy, gz; // estimated gravity direction
gx = 2 * (q[1]*q[3] - q[0]*q[2]);
gy = 2 * (q[0]*q[1] + q[2]*q[3]);
gz = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1) * 180/M_PI;
ypr[1] = atan(gx / sqrt(gy*gy + gz*gz)) * 180/M_PI;
ypr[2] = atan(gy / sqrt(gx*gx + gz*gz)) * 180/M_PI;
}
void loop()
{
float g[3];
float a[3];
float angles[3];
read_gyro(g);
read_accel(a);
get_quaternion(a,g);
getYawPitchRoll(angles);
Serial.print("Gx:");
Serial.print(g[0]);
Serial.print(" | Gy:");
Serial.print(g[1]);
Serial.print(" | Gz:");
Serial.print(g[2]);
Serial.println(" ");
Serial.print("Ax:");
Serial.print(a[0]);
Serial.print(" | Ay:");
Serial.print(a[1]);
Serial.print(" | Az:");
Serial.print(a[2]);
Serial.println(" ");
Serial.print("psi:");
Serial.print(angles[0]);
Serial.print(" | theta:");
Serial.print(angles[1]);
Serial.print(" | phi:");
Serial.print(angles[2]);
Serial.println(" ");
Serial.println(" ");
Serial.println(" ");
Serial.println(" ");
Serial.print(27, BYTE);
Serial.print("[H");
delay(10);
}
Thanks in advance.