Ambilight - FastLED - using void loop and analog control.

Hello there

i am trying to controlling the brightness of my ambilight LED.

Can anyone tell me why my analog A0 input not doing anything to the brightness when I try adjusting it.

I am using the Joystick module as analog input, is that not possible? I would use a potentiometer, but I dont have that ye, sadly.

And second, is it not possible 2 use the Void Loop in this ambilight code here I found online??

The red font text in the quote is the code I have added.

Sorry but im a rookie in this Arduino programming.

Thx a lot guys!

// Slightly modified Adalight protocol implementation that uses FastLED
// library (http://fastled.io) for driving WS2811/WS2812 led stripe
// Was tested only with Prismatik software from Lightpack project

#include “FastLED.h”

#define NUM_LEDS 180 // Max LED count
#define LED_PIN 6 // arduino output pin
#define GROUND_PIN 10

#define SPEED 115200 // virtual serial port speed, must be the same in boblight_config

CRGB leds[NUM_LEDS];
uint8_t * ledsRaw = (uint8_t *)leds;

// A ‘magic word’ (along with LED count & checksum) precedes each block
// of LED data; this assists the microcontroller in syncing up with the
// host-side software and properly issuing the latch (host I/O is
// likely buffered, making usleep() unreliable for latch). You may see
// an initial glitchy frame or two until the two come into alignment.
// The magic word can be whatever sequence you like, but each character
// should be unique, and frequent pixel values like 0 and 255 are
// avoided – fewer false positives. The host software will need to
// generate a compatible header: immediately following the magic word
// are three bytes: a 16-bit count of the number of LEDs (high byte
// first) followed by a simple checksum value (high byte XOR low byte
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
// where 0 = off and 255 = max brightness.

static const uint8_t magic = {
‘A’, ‘d’, ‘a’
};
#define MAGICSIZE sizeof(magic)
#define HEADERSIZE (MAGICSIZE + 3)

#define MODE_HEADER 0
#define MODE_DATA 2

// If no serial data is received for a while, the LEDs are shut off
// automatically. This avoids the annoying “stuck pixel” look when
// quitting LED display programs on the host computer.
static const unsigned long serialTimeout = 150000; // 150 seconds

#define MAX_BRIGHTNESS 164 // Thats full on, watch the power!
#define MIN_BRIGHTNESS 32 // set to a minimum of 25%
const int brightnessInPin = A0; // The Analog input pin that the brightness control potentiometer is attached to.
void setup()
{
pinMode(GROUND_PIN, OUTPUT);
digitalWrite(GROUND_PIN, LOW);
FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS);

FastLED.setBrightness(MAX_BRIGHTNESS);
int mappedValue = map(analogRead(brightnessInPin), 0, 1023, 0, 255);
FastLED.setBrightness(constrain(mappedValue, MIN_BRIGHTNESS, MAX_BRIGHTNESS));
int mappedHue;

// Dirty trick: the circular buffer for serial data is 256 bytes,
// and the “in” and “out” indices are unsigned 8-bit types – this
// much simplifies the cases where in/out need to “wrap around” the
// beginning/end of the buffer. Otherwise there’d be a ton of bit-
// masking and/or conditional code every time one of these indices
// needs to change, slowing things down tremendously.
uint8_t
buffer[256],
indexIn = 0,
indexOut = 0,
mode = MODE_HEADER,
hi, lo, chk, i, spiFlag;
int16_t
bytesBuffered = 0,
hold = 0,
c;
int32_t
bytesRemaining;
unsigned long
startTime,
lastByteTime,
lastAckTime,
t;
int32_t outPos = 0;

Serial.begin(SPEED); // Teensy/32u4 disregards baud rate; is OK!

Serial.print(“Ada\n”); // Send ACK string to host

startTime = micros();
lastByteTime = lastAckTime = millis();

// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code’s overall throughput.

for (;; ) {

// Implementation is a simple finite-state machine.
// Regardless of mode, check for serial input each time:
t = millis();
if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
buffer[indexIn++] = c;
bytesBuffered++;
lastByteTime = lastAckTime = t; // Reset timeout counters
}
else {
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if ((t - lastAckTime) > 1000) {
Serial.print(“Ada\n”); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if ((t - lastByteTime) > serialTimeout) {
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB)); //filling Led array by zeroes
FastLED.show();
lastByteTime = t; // Reset counter
}
}

switch (mode) {

case MODE_HEADER:

// In header-seeking mode. Is there enough data to check?
if (bytesBuffered >= HEADERSIZE) {
// Indeed. Check for a ‘magic word’ match.
for (i = 0; (i < MAGICSIZE) && (buffer[indexOut++] == magic[i++]); );
if (i == MAGICSIZE) {
// Magic word matches. Now how about the checksum?
hi = buffer[indexOut++];
lo = buffer[indexOut++];
chk = buffer[indexOut++];
if (chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
bytesBuffered -= 3;
outPos = 0;
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
else {
// Checksum didn’t match; search resumes after magic word.
indexOut -= 3; // Rewind
}
} // else no header match. Resume at first mismatched byte.
bytesBuffered -= i;
}
break;

case MODE_DATA:

if (bytesRemaining > 0) {
if (bytesBuffered > 0) {
if (outPos < sizeof(leds))
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
bytesBuffered–;
bytesRemaining–;
}
// If serial buffer is threatening to underrun, start
// introducing progressively longer pauses to allow more
// data to arrive (up to a point).
}
else {
// End of data – issue latch:
startTime = micros();
mode = MODE_HEADER; // Begin next header search
FastLED.show();
}
} // end switch
} // end for(;; )
}

void loop()
{
// Not used. See note in setup() function.

}

                                  int mappedValue = map(analogRead(brightnessInPin), 0, 1023, 0, 255);

What do you get for mappedValue? Dividing the analogRead() value by 4 is much more efficient than using map(), while producing nearly the same results.