Aufforderung zum Starten rausmachen

Hallo, ich habe ein Sketch auf mein Arduino gezogen und etwas eigenes eingebracht.
Das ganze soll funktionieren, sobald der Arduino an Strom kommt.
Zurzeit ist es so, dass ich Ihn erst am PC anschließen muss, und dann auf die entsprechende Baudrate gehe und “eine beliebige taste” drücken muss, damit dieser startet.

Wie bekomme ich das weg?

LG

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"



#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif


MPU6050 mpu;


// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL


#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '

, 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, ‘\r’, ‘\n’ };

// ================================================================
// ===              INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;   
void dmpDataReady() {
    mpuInterrupt = true;
}

// ================================================================
// ===                      INITIAL SETUP                      ===
// ================================================================

void setup() {

pinMode(5,OUTPUT);
  pinMode(6,OUTPUT);
  pinMode(9,OUTPUT);
  pinMode(10,OUTPUT);
  pinMode(11,OUTPUT);
  pinMode(12,OUTPUT);

// join I2C bus (I2Cdev library doesn’t do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

// initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it’s
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

// initialize device
    Serial.println(F(“Initializing I2C devices…”));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);

// verify connection
    Serial.println(F(“Testing device connections…”));
    Serial.println(mpu.testConnection() ? F(“MPU6050 connection successful”) : F(“MPU6050 connection failed”));

// wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

Serial.println(F(“Initializing DMP…”));
    devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(120);
    mpu.setYGyroOffset(28);
    mpu.setZGyroOffset(23);
    mpu.setZAccelOffset(1238); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it’s ready
        Serial.println(F(“Enabling DMP…”));
        mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
        Serial.println(F(“Enabling interrupt detection (Arduino external interrupt 0)…”));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it’s okay to use it
        Serial.println(F(“DMP ready! Waiting for first interrupt…”));
        dmpReady = true;

// get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it’s going to break, usually the code will be 1)
        Serial.print(F(“DMP Initialization failed (code “));
        Serial.print(devStatus);
        Serial.println(F(”)”));
    }

// configure LED for output
    pinMode(LED_PIN, OUTPUT);
}

// ================================================================
// ===                    MAIN PROGRAM LOOP                    ===
// ================================================================

void loop() {
    // if programming failed, don’t try to do anything
    if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {

}

// reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
    fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F(“FIFO overflow!”));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
       
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");

double Winkel = ypr[1] * 180/M_PI;

double Regler = Winkel*30;
    double Offset = -3.6;
    double OffsetBereich1 = Offset - 0.2;
    double OffsetBereich2 = Offset + 0.2;

Serial.println(Regler);
   
        if(Winkel>Offset){

if(Regler>254){Regler = 254;}
         
          digitalWrite(10, LOW);
          digitalWrite(12,LOW);
          digitalWrite(9, HIGH);
          digitalWrite(11,HIGH);
          analogWrite(6, Regler);
          analogWrite(5, Regler);       
        }

if( Winkel>(OffsetBereich2) && Winkel<(OffsetBereich1)){
         
          digitalWrite(10, LOW);
          digitalWrite(12,LOW);
          digitalWrite(9, LOW);
          digitalWrite(11,LOW);
         
         
         
          }
        else{
       
          int Reglera = Regler * (-1);
          if (Reglera>254){Reglera =254;}
          digitalWrite(10, HIGH);
          digitalWrite(12,HIGH);
          digitalWrite(9, LOW);
          digitalWrite(11,LOW);
          analogWrite(5, Reglera);
          analogWrite(6, Reglera);
         
        }
     
           
        #endif
       
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}

Noss__: Hallo, ich habe ein Sketch auf mein Arduino gezogen und etwas eigenes eingebracht. Das ganze soll funktionieren, sobald der Arduino an Strom kommt. Zurzeit ist es so, dass ich Ihn erst am PC anschließen muss, und dann auf die entsprechende Baudrate gehe und "eine beliebige taste" drücken muss, damit dieser startet.

Wie bekomme ich das weg?

Lösche im Code die Zeile weg, wo der Code (blockierend) auf Daten wartet

while (!Serial.available()); // wait for data

Danach blockiert noch ein zweiter Teil:

    // wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

Der muss auch noch raus.

Gruß Tommy