bldc control

hi guys, i am using arduino uno to produce a 3 phase PWM signal that is 120deg apart from each other to be fed into a BLDC.

the flow of the circuitry work:
PWM-deadtime-optocoupler-mosfetdriver-bldc.

but the bldc only buzz instead of it spinning.

please advise.

/*
*
* DDS Sine Generator mit ATMEGS 328
* Timer2 generates the  31250 KHz Clock Interrupt
* Use Timer2 Interrupt to change duty cycle for the output PWM signals
* D. Tolken
* 120 degress out of phase signals for 3 phase BLDC motor controller
* CPUT, South Africa


a Huge thumbs up and thanks must be given to Martin Nawrath for the developement of the original code to generate a sine wave using PWM and a LPF.
Link:
                                         http://interface.khm.de/index.php/lab/experiments/arduino-dds-sinewave-generator/
*/

#include "avr/pgmspace.h" //Store data in flash (program) memory instead of SRAM

// Look Up table of a single sine period divied up into 256 values. Refer to PWM to sine.xls on how the values was calculated
PROGMEM  prog_uchar sine256[]  = {
  127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173,176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215,217,219,221,223,225,227,229,231,233,234,236,238,239,240,
  242,243,244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254,254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245,244,243,242,240,239,238,236,234,233,231,229,227,225,223,
  221,219,217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178,176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130,127,124,121,118,115,111,108,105,102,99,96,93,90,87,84,81,78,
  76,73,70,67,64,62,59,56,54,51,49,46,44,42,39,37,35,33,31,29,27,25,23,21,20,18,16,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,16,18,20,21,23,25,27,29,31,
  33,35,37,39,42,44,46,49,51,54,56,59,62,64,67,70,73,76,78,81,84,87,90,93,96,99,102,105,108,111,115,118,121,124

};
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //define a bit to have the properties of a clear bit operator
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))//define a bit to have the properties of a set bit operator

int PWM1= 11;// PWM1 output, phase 1
int PWM2 = 3; //![WM2 ouput, phase 2
int PWM3 = 10; //PWM3 output, phase 3
int offset_1 = 85; //offset 1 is 120 degrees out of phase with previous phase, Refer to PWM to sine.xls
int offset_2 = 170; //offset 2 is 120 degrees out of phase with offset 1. Refer to PWM to sine.xls
int program_exec_time = 6; //monitor how quickly the interrupt trigger
int ISR_exec_time = 7; //monitor how long the interrupt takes

double dfreq;
const double refclk=31376.6;      // measured output frequency

// variables used inside interrupt service declared as voilatile
volatile byte current_count;              // Keep track of where the current count is in sine 256 array
volatile byte ms4_delay;             //variable used to generate a 4ms delay
volatile byte c4ms;              // after every 4ms this variable is incremented, its used to create a delay of 1 second
volatile unsigned long phase_accumulator;   // pahse accumulator
volatile unsigned long tword_m;  // dds tuning word m, refer to DDS_calculator (from Martin Nawrath) for explination.

void setup()
{
  pinMode(PWM1, OUTPUT);      //sets the digital pin as output
  pinMode(PWM2, OUTPUT);      //sets the digital pin as output
  pinMode(PWM3, OUTPUT);      //sets the digital pin as output
  pinMode(program_exec_time, OUTPUT);      //sets the digital pin as output
  pinMode(9, OUTPUT);         //sets the digital pin as output
  sbi(PORTD,program_exec_time); //Sets the pin
  Setup_timer1();
  Setup_timer2();
  
  //Disable Timer 1 interrupt to avoid any timing delays
  cbi (TIMSK0,TOIE0);              //disable Timer0 !!! delay() is now not available
  sbi (TIMSK2,TOIE2);              //enable Timer2 Interrupt

  dfreq=1000.0;                    //initial output frequency = 1000.o Hz
  tword_m=pow(2,32)*dfreq/refclk;  //calulate DDS new tuning word 

}
void loop()
{
  while(1) 
  {
      sbi(PORTD,program_exec_time); //Sets the pin 
      if (c4ms > 250) // c4ms = 4ms, thus 4ms *250 = 1 second delay
       {                 
        c4ms=0;                          //Reset c4ms
        dfreq=analogRead(0);             //Read voltage on analog 1 to see desired output frequency, 0V = 0Hz, 5V = 1.023kHz
        cbi (TIMSK2,TOIE2);              //Disable Timer2 Interrupt
        tword_m=pow(2,32)*dfreq/refclk;  //Calulate DDS new tuning word
        sbi (TIMSK2,TOIE2);              //Enable Timer2 Interrupt 
      }
  }
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM,  16000000/510 = 31372.55 Hz clock
void Setup_timer1(void)
{
  // Timer1 Clock Prescaler to : 1
  sbi (TCCR1B, CS10);
  cbi (TCCR1B, CS11);
  cbi (TCCR1B, CS12);
  
  // Timer1 PWM Mode set to Phase Correct PWM
  cbi (TCCR1A, COM1A0);
  sbi (TCCR1A, COM1A1);
  cbi (TCCR1A, COM1B0); 
  sbi (TCCR1A, COM1B1);

  // Mode 1 / Phase Correct PWM
  sbi (TCCR1A, WGM10); 
  cbi (TCCR1A, WGM11);
  cbi (TCCR1B, WGM12);
  cbi (TCCR1B, WGM13);
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM,  16000000/510 = 31372.55 Hz clock
void Setup_timer2() 
{
  // Timer2 Clock Prescaler to : 1
  sbi (TCCR2B, CS20);
  cbi (TCCR2B, CS21);
  cbi (TCCR2B, CS22);

  // Timer2 PWM Mode set to Phase Correct PWM
  cbi (TCCR2A, COM2A0);  // clear Compare Match
  sbi (TCCR2A, COM2A1);
  cbi (TCCR2A, COM2B0); 
  sbi (TCCR2A, COM2B1);
  
  // Mode 1  / Phase Correct PWM
  sbi (TCCR2A, WGM20);  
  cbi (TCCR2A, WGM21);
  cbi (TCCR2B, WGM22);
}


//Timer2 Interrupt Service at 31372,550 KHz = 32uSec
//This is the timebase REFCLOCK for the DDS generator
//FOUT = (M (REFCLK)) / (2 exp 32)
//Runtime : 8 microseconds
ISR(TIMER2_OVF_vect)
{
  cbi(PORTD,program_exec_time); //Clear the pin
  sbi(PORTD,ISR_exec_time);          // Sets the pin

  phase_accumulator=phase_accumulator+tword_m; //Adds tuning M word to previoud phase accumulator. refer to DDS_calculator (from Martin Nawrath) for explination.
  current_count=phase_accumulator >> 24;     // use upper 8 bits of phase_accumulator as frequency information                      
  
  OCR2A=pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR2B=pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  
  OCR1A = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
  OCR1B = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
  
  //increment variable ms4_delay every 4mS/125 =  milliseconds 32uS
  if(ms4_delay++ == 125) 
  {  
    c4ms++;
    ms4_delay=0; //reset count
   }   

cbi(PORTD,ISR_exec_time);            //Clear the pin
}

attached is the ac signal output from the 3 phase inverter .

Scope traces look fine.

But you say almost nothing about the motor... BLDC's can be sensored or sensorless,
how are you doing the commutation?

Well its obvious from what you have given that you are running open loop, since the
thing only buzzes. Are you perchance expecting the motor to start at 60000 rpm
from standing (the 'scope scale is 500us/division I think, so 1kHz sinusoidal drive.

How do you expect a motor to lock onto a signal many times is maximum physical
rotation speed?

yup. i am using a senseless bldc to do the commutation.

by using the ac signal generated by the h-bridge circuitry. the 3 phase va vb vc are used to fed into u v w of the bldc.

by adjusting the potentiometer. the reference voltage of the digital input to analog control will be fed into micro controller and doing add to output a frequency that change with respect to the input of the digital signal?

how do i go about adjusting and make sure that the motor don't buzz but spin normally? what should be done? at 50% duty cycle(measured at 2.5V) the bldc spin quite fine but stall and buzz when adjusted just away from 2.5v.

Its sensorless, not senseless!

You have to ramp up the frequency from zero to start a BLDC open-loop.

Why do you expect open-loop drive to work at all? Its usually hopeless and
only used to start a motor till there's enough back-EMF for back-EMF sensing
commutation.

ops, auto correct.

sorry but to ask how do i ramp up my frequency slowly ?

By increasing your frequency variable with time? tword_m is the variable. That's
the basic control knob in a DDS system.

You have made phase_accumulator and tword_m unsigned, which means you haven't
thought about going backwards - I'd make them signed as a matter of course for
motion control.

Don't even think of running above 200Hz, thats 12,000rpm!!