Can this code be shortened using variables?

I just re-wrote code, using variables. I'm not getting any readings from my sensors. I suspect it's in the area designated "float output". It seems there should be a reference to the 3 sensors there. Not sure. Your thoughts?

#include <SPI.h>

#define sensorPin1 A0
#define sensorPin2 A1
#define sensorPin3 A2  
#define fanControl 2 // Arduino pin connected to relay for fan
#define pumpControl 3 // Arduino pin connected to relayfor pump

#define getOutdoorTemp 
#define getSupplyTemp
#define getReturnTemp

// resistance at 25 degrees C
#define THERMISTORNOMINAL 10000      
// temp. for nominal resistance (almost always 25 C)
#define TEMPERATURENOMINAL 25   
// how many samples to take and average, more takes longer
// but is more 'smooth'
#define NUMSAMPLES 5
// The beta coefficient of the thermistor (usually 3000-4000)
#define BCOEFFICIENT 3950
// the value of the 'other' resistor
#define SERIESRESISTOR 10000    

int samples[NUMSAMPLES];

const int AIR_TEMP_THRESHOLD_UPPER = 74; // Start fan to circulate warm air around barrels, change to your desire value
const int AIR_TEMP_THRESHOLD_LOWER = 70; // Stop fan to prevent cooling barrels, change to your desire value

const int WATER_TEMP_THRESHOLD_UPPER = 50; // Start pump to heat greenhouse floor, change to your desire value
const int WATER_TEMP_THRESHOLD_LOWER = 40; // Stop pump to prevent cooling greenhouse floor, change to your desire value

void setup(void) {
  Serial.begin(9600);
  
  pinMode(sensorPin1, INPUT);
  pinMode(sensorPin2, INPUT);
  pinMode(sensorPin3, INPUT);
  pinMode(fanControl, OUTPUT);
  pinMode(pumpControl, OUTPUT);

  
  
}

void loop(void) {
  uint8_t i,j,k;
  float average;

  // take N samples in a row, with a slight delay
  for (i,j,k=0; i,j,k< NUMSAMPLES; i,j,k++) {
   samples[i,j,k] = analogRead(sensorPin1); analogRead(sensorPin2); analogRead(sensorPin3);
   delay(100);
  }
  
  // average all the samples out
  average = 0;
  for (i,j,k=0; i,j,k< NUMSAMPLES; i,j,k++) {
     average += samples[i,j,k];
  }
  average /= NUMSAMPLES;

  
  // convert the value to resistance
  average = 1023 / average - 1;
  average = SERIESRESISTOR / average;

  delay(100);

  
  float output;
  output = average / THERMISTORNOMINAL;     // (R/Ro)
  output = log(output);                  // ln(R/Ro)
  output /= BCOEFFICIENT;                   // 1/B * ln(R/Ro)
  output += 1.0 / (TEMPERATURENOMINAL + 273.15); // + (1/To)
  output = 1.0 / output;                 // Invert
  output -= 273.15;                         // convert absolute temp to C
  output = output *1.8+32;
  delay(100);

  float oATemp = getOutdoorTemp(sensorPin1);
  float supplyTemp = getSupplyTemp(sensorPin2);
  float returnTemp =  getReturnTemp(sensorPin3);

   {
    if (oATemp > AIR_TEMP_THRESHOLD_UPPER) {
      Serial.println("Fan relay is turned on");
      digitalWrite(fanControl, HIGH); // turn on
    } else if (oATemp < AIR_TEMP_THRESHOLD_LOWER) {
      Serial.println("Fan relay is turned off");
      digitalWrite(fanControl, LOW); // turn off
    }

    {
    if (returnTemp > WATER_TEMP_THRESHOLD_UPPER) {
      Serial.println("Pump relay is turned on");
      digitalWrite(pumpControl, HIGH); // turn on
    } else if (returnTemp < WATER_TEMP_THRESHOLD_LOWER) {
      Serial.println("Pump relay is turned off");
      digitalWrite(pumpControl, LOW); // turn off
    }
    }
   }
   
   Serial.print("Outdoor Air Temperature");
   Serial.print(oATemp);
   Serial.println(" Deg F");
   delay(1000);

   Serial.print("Supply Water Temperature");
   Serial.print(supplyTemp);
   Serial.println(" Deg F");
   delay(1000);

   Serial.print("Return Water Temperature");
   Serial.print(returnTemp);
   Serial.println(" Deg F");
   delay(1000);

}