#include "I2Cdev.h"
#include
#include
#include
#include "MPU6050_6Axis_MotionApps20.h"
#define d_speed 1.5 #define d_dir 3
#define IN1 11 #define IN2 10 #define IN3 9 #define IN4 3
char content = 'P'; int MotorAspeed, MotorBspeed; float MOTORSLACK_A = 40; // Compensate for motor slack range (low PWM values which result in no motor engagement) float MOTORSLACK_B = 40; #define BALANCE_PID_MIN -255 // Define PID limits to match PWM max in reverse and foward #define BALANCE_PID_MAX 255
MPU6050 mpu;
const int rxpin = 6; //Bluetooth serial stuff const int txpin = 5; SoftwareSerial blue(rxpin, txpin);
//Ultrasonic ultrasonic(A0, A1); //int distance;
// MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer
// orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorFloat gravity; // [x, y, z] gravity vector float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
/*********Tune these 4 values for your BOT*********/ double setpoint; //set the value when the bot is perpendicular to ground using serial monitor. double originalSetpoint; //Read the project documentation on circuitdigest.com to learn how to set these values #define Kp 10 //Set this first #define Kd 0.6 //Set this secound #define Ki 160 //Finally set this
#define RKp 50 //Set this first #define RKd 4//Set this secound #define RKi 300 //Finally set this /******End of values setting*********/ double ysetpoint; double yoriginalSetpoint; double input, yinput, youtput, output, Buffer[3];
PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); PID rot(&yinput, &youtput, &ysetpoint, RKp, RKi, RKd, DIRECT);
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; }
void setup() { Serial.begin(115200); blue.begin(9600); blue.setTimeout(10); init_imu(); //initialiser le MPU6050 initmot(); //initialiser les moteurs originalSetpoint = 176; //consigne yoriginalSetpoint = 0.1; setpoint = originalSetpoint ; ysetpoint = yoriginalSetpoint ; }
void loop() { getvalues(); Bt_control(); printval(); }
void init_imu() { // initialize device Serial.println(F("Initializing I2C devices...")); Wire.begin(); TWBR = 24; mpu.initialize();
// verify connection Serial.println(F("Testing device connections...")); Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
// load and configure the DMP devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1688);
// make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it's ready Serial.println(F("Enabling DMP...")); mpu.setDMPEnabled(true);
// enable Arduino interrupt detection Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); attachInterrupt(0, dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true;
// get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize();
//setup PID pid.SetMode(AUTOMATIC); pid.SetSampleTime(10); pid.SetOutputLimits(-255, 255); rot.SetMode(AUTOMATIC); rot.SetSampleTime(10); rot.SetOutputLimits(-20, 20); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } }
void getvalues() { // if programming failed, don't try to do anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { new_pid(); } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus();
// get current FIFO count fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); Serial.println(F("FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
// read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize);
// track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize;
mpu.dmpGetQuaternion(&q, fifoBuffer); //get value for q mpu.dmpGetGravity(&gravity, &q); //get value for gravity mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); //get value for ypr
input = ypr[1] * 180 / M_PI + 180; yinput = ypr[0] * 180 / M_PI; } }
void new_pid() { //Compute error pid.Compute(); rot.Compute(); // Convert PID output to motor control MotorAspeed = compensate_slack(youtput, output, 1); MotorBspeed = compensate_slack(youtput, output, 0); motorspeed(MotorAspeed, MotorBspeed); //change speed } //Fast digitalWrite is implemented
void Bt_control() { if (blue.available()) { content = blue.read(); if (content == 'F') setpoint = originalSetpoint - d_speed;//Serial.println(setpoint);} //forward else if (content == 'B') setpoint = originalSetpoint + d_speed;//Serial.println(setpoint);} //backward else if (content == 'L') ysetpoint = constrain((ysetpoint + yoriginalSetpoint - d_dir), -180, 180); //Serial.println(ysetpoint);} //left else if (content == 'R') ysetpoint = constrain(ysetpoint + yoriginalSetpoint + d_dir, -180, 180); //Serial.println(ysetpoint);} //right else if (content == 'S') { setpoint = originalSetpoint; } } else content = 'P'; }
void initmot() { //Initialise the Motor outpu pins pinMode (IN4, OUTPUT); pinMode (IN3, OUTPUT); pinMode (IN2, OUTPUT); pinMode (IN1, OUTPUT);
//By default turn off both the motor analogWrite(IN4, LOW); analogWrite(IN3, LOW); analogWrite(IN2, LOW); analogWrite(IN1, LOW); }
double compensate_slack(double yOutput, double Output, bool A) { // Compensate for DC motor non-linear "dead" zone around 0 where small values don't result in movement //yOutput is for left,right control if (A) { if (Output >= 0) Output = Output + MOTORSLACK_A - yOutput; if (Output < 0) Output = Output - MOTORSLACK_A - yOutput; } else { if (Output >= 0) Output = Output + MOTORSLACK_B + yOutput; if (Output < 0) Output = Output - MOTORSLACK_B + yOutput; } Output = constrain(Output, BALANCE_PID_MIN, BALANCE_PID_MAX); return Output; }
void motorspeed(int MotorAspeed, int MotorBspeed) {
// Motor A control if (MotorAspeed >= 0) { analogWrite(IN1, abs(MotorAspeed)); digitalWrite(IN2, LOW); } else { digitalWrite(IN1, LOW); analogWrite(IN2, abs(MotorAspeed)); }
// Motor B control if (MotorBspeed >= 0) { analogWrite(IN3, abs(MotorBspeed)); digitalWrite(IN4, LOW); } else { digitalWrite(IN3, LOW); analogWrite(IN4, abs(MotorBspeed)); } } void printval() { Serial.print(yinput); Serial.print("\t"); Serial.print(yoriginalSetpoint); Serial.print("\t"); Serial.print(ysetpoint); Serial.print("\t"); Serial.print(youtput); Serial.print("\t"); Serial.print("\t"); Serial.print(input); Serial.print("\t"); Serial.print(originalSetpoint); Serial.print("\t"); Serial.print(setpoint); Serial.print("\t"); Serial.print(output); Serial.print("\t"); Serial.print("\t"); Serial.print(MotorAspeed); Serial.print("\t"); Serial.print(MotorBspeed); Serial.print("\t"); Serial.print(content); Serial.println("\t"); }