bonjour, je souhaite automatiser un changement d eau,sans passer par des capteurs de niveaux qui sont souvent sources de problemes.
l idée est d utiliser 2 capteurs de débit avec effet hall de type Capteur de débit YFS201 - Débitmètres | GO TRONIC .
j ai besoin de quelque chose de simple, la carte arduino sera activée à l heure demandée par un automate industrielle (celui ci ne gerant pas le pwm j ai besoin de l arduino), donc je n ai pas besoin d 'horloge. je n ai pas besoin non plus d affichage a l'ecran. j ai essayé de prendre des bouts de codes et de faire quelque chose mais des erreurs ou mauvais choix trainent,si quelqu un pouvait me corriger..merci
sequence des actions:
1)automate met sous tension l arduino
2)l 'arduino derive l 'eau ,en fermant une electrovanne du circuit et ouvrant l 'electrovanne pour evacuer l 'eau .
le temps d evacuation de l eau sera une constante (delay 120000 ). je voudrai recuperer la quantité d eau qui s'est evacuée pendant ce temps.
3) ouverture electrovanne eau propre,fermeture d une autre
4) ajout d eau nouvelle pour egaler celle evacuée grace au 2eme capteurs.
5)fin de l operation et pas de boucle continue
/*
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev
Measure the liquid/water flow rate using this code.
Connect Vcc and Gnd of sensor to arduino, and the
signal line to arduino digital pin 2.
*/
#define electroVout 1 //electrovanne ouverture evacuation eau
#define electroVin 3 //electrovanne ouverture changement eau
#define electroVdown 4 //electrovanne circuit descendant aquarium
#define electroVup 5 //electrovanne circuit montant aquarium
#define pompe 7 // pompe reserve eau
byte statusLed = 13;
byte sensorInterrupt = 0; // 0 = digital pin 2
byte sensorPin = 2;
byte sensorInterrupt2 = 0; // 0 = digital pin 2
byte sensorPin2 = 6;
// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;
volatile byte pulseCount;
volatile byte pulseCount2;
float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;
float flowRate2;
unsigned int flowMilliLitres2;
unsigned long totalMilliLitres2;
unsigned long oldTime;
unsigned long oldTime2;
void setup()
{
// Initialize a serial connection for reporting values to the host
Serial.begin(38400);
//electrovanne et pompe
pinMode(electroVout, OUTPUT);
pinMode(electroVin, OUTPUT);
pinMode(electroVdown, OUTPUT);
pinMode(electroVup, OUTPUT);
pinMode(pompe, OUTPUT);
// Set up the status LED line as an output
// pinMode(statusLed, OUTPUT);
// digitalWrite(statusLed, HIGH); // We have an active-low LED attached
pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);
pulseCount = 0;
flowRate = 0.0;
flowMilliLitres = 0;
totalMilliLitres = 0;
oldTime = 0;
pinMode(sensorPin2, INPUT);
digitalWrite(sensorPin2, HIGH);
pulseCount2 = 0;
flowRate2 = 0.0;
flowMilliLitres2 = 0;
totalMilliLitres2 = 0;
oldTime2 = 0;
// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH
// state to LOW state)
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
attachInterrupt(sensorInterrupt2, pulseCounter2, FALLING);
}
/**
* Main program loop
*/
void loop()
{
digitalWrite(electroVout,LOW); // ouvre electrovanne evacuation eau
digitalWrite(electroVup,LOW); //ferme electrovanne ,eau montante
if((millis() - oldTime) > 1000) // Only process counters once per second
{
// Disable the interrupt while calculating flow rate and sending the value to
// the host
detachInterrupt(sensorInterrupt);
// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
// Note the time this processing pass was executed. Note that because we've
// disabled interrupts the millis() function won't actually be incrementing right
// at this point, but it will still return the value it was set to just before
// interrupts went away.
oldTime = millis();
// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres = (flowRate / 60) * 1000;
// Add the millilitres passed in this second to the cumulative total
totalMilliLitres += flowMilliLitres;
unsigned int frac;
delay(120000);
digitalWrite(electroVout,HIGH); // FERME electrovanne evacuation eau
digitalWrite(electroVup,HIGH); //OUVRE electrovanne ,eau montante
digitalWrite(electroVin,LOW); // ouvre electrovanne ouverture changement eau
digitalWrite(electroVdown,LOW); //electrovanne circuit descendant aquarium
if((millis() - oldTime2) > 1000) // Only process counters once per second
{
// Disable the interrupt while calculating flow rate and sending the value to
// the host
detachInterrupt(sensorInterrupt2);
// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate2 = ((1000.0 / (millis() - oldTime2)) * pulseCount2) / calibrationFactor;
// Note the time this processing pass was executed. Note that because we've
// disabled interrupts the millis() function won't actually be incrementing right
// at this point, but it will still return the value it was set to just before
// interrupts went away.
oldTime2 = millis();
// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres2 = (flowRate2 / 60) * 1000;
// Add the millilitres passed in this second to the cumulative total
totalMilliLitres2 += flowMilliLitres2;
if( totalMilliLitres2 == totalMilliLitres ) {
//Action
digitalWrite(electroVin,HIGH); // ferme electrovanne ouverture changement eau
digitalWrite(electroVdown,HIGH); //ouvre electrovanne circuit descendant aquarium
// End of Action
}
unsigned int frac;
// Reset the pulse counter so we can start incrementing again
pulseCount = 0;
pulseCount2 = 0;
// Enable the interrupt again now that we've finished sending output
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
attachInterrupt(sensorInterrupt2, pulseCounter2, FALLING);
}
}
}
/*
Insterrupt Service Routine
*/
void pulseCounter()
{
// Increment the pulse counter
pulseCount++;
}
void pulseCounter2()
{
// Increment the pulse counter
pulseCount2++;
}