Hello
I hope this is a right place to my question. I am newbie at arduino programing but like to build things like this chladnie waves. Basicly i use a signal generator and a rotary encoder with a pre written code. It makes a wave wich goes to an amplifier and to a speaker wich resonate with a plate. The code and all stuff working fine. I would ask for a little change in the code.
Its starts, you can chose any frequency from 100-1200Hz (its enough i guess for human ears) with the potentiometer and you can hear whatever you chose and also hear while rotating and of course you can see the waves on the plate.
After you are bored to "play" with this it would be so anoying if its just plays forever the last frequency (example 800-900Hz) so after nobody playing it should stop.
If (3sec passed, and the rotary at the same position) is should write frequency to 0HZ or switch off signal generator. if you rotate again the potenciometer it works again like before from 100hz or from last stored frequency its not a point.
/*
Main code by Richard Visokey AD7C - www.ad7c.com
Revision 2.0 - November 6th, 2013
*/
// Include the library code
#include <LiquidCrystal.h>
#include <rotary.h>
#include <EEPROM.h>
//Setup some items
#define W_CLK 8 // Pin 8 - connect to AD9850 module word load clock pin (CLK)
#define FQ_UD 9 // Pin 9 - connect to freq update pin (FQ)
#define DATA 11 // Pin 11 - connect to serial data load pin (DATA)
#define RESET 10 // Pin 10 - connect to reset pin (RST)
#define pulseHigh(pin) {digitalWrite(pin, HIGH); digitalWrite(pin, LOW); }
Rotary r = Rotary(2,3); // sets the pins the rotary encoder uses. Must be interrupt pins.
LiquidCrystal lcd(12, 13, 7, 6, 5, 4); // I used an odd pin combination because I need pin 2 and 3 for the interrupts.
int_fast32_t rx=100; // Base (starting) frequency of VFO. This only loads once. To force load again see ForceFreq variable below.
int_fast32_t rx2=1; // variable to hold the updated frequency
int_fast32_t increment = 10; // starting VFO update increment in HZ.
int_fast32_t iffreq = 0000000; // Intermedite Frequency - Amount to subtract (-) from base frequency. ********************************************
int buttonstate = 0;
int buttonstate2 = 0;
int GoIF = 1;
String hertz = "10 Hz";
int hertzPosition = 5;
byte ones,tens,hundreds,thousands,tenthousands,hundredthousands,millions ; //Placeholders
String freq; // string to hold the frequency
int_fast32_t timepassed = millis(); // int to hold the arduino miilis since startup
int memstatus = 1; // value to notify if memory is current or old. 0=old, 1=current.
int ForceFreq = 1; // Change this to 0 after you upload and run a working sketch to activate the EEPROM memory. YOU MUST PUT THIS BACK TO 0 AND UPLOAD THE SKETCH AGAIN AFTER STARTING FREQUENCY IS SET!
void setup() {
pinMode(A0,INPUT); // Connect to a button that goes to GND on push
pinMode(A5,INPUT); // IF sense **********************************************
digitalWrite(A0,HIGH);
digitalWrite(A5,HIGH);
lcd.begin(16, 2);
PCICR |= (1 << PCIE2);
PCMSK2 |= (1 << PCINT18) | (1 << PCINT19);
sei();
pinMode(FQ_UD, OUTPUT);
pinMode(W_CLK, OUTPUT);
pinMode(DATA, OUTPUT);
pinMode(RESET, OUTPUT);
pulseHigh(RESET);
pulseHigh(W_CLK);
pulseHigh(FQ_UD); // this pulse enables serial mode on the AD9850 - Datasheet page 12.
lcd.setCursor(hertzPosition,1);
lcd.print(hertz);
// Load the stored frequency
if (ForceFreq == 0) {
freq = String(EEPROM.read(0))+String(EEPROM.read(1))+String(EEPROM.read(2))+String(EEPROM.read(3))+String(EEPROM.read(4))+String(EEPROM.read(5))+String(EEPROM.read(6));
rx = freq.toInt();
}
}
void loop() {
// Update the display and frequency if the new Freq NEQ the old Freq
if (rx != rx2){
showFreq();
sendFrequency(rx);
rx2 = rx;
}
// Rotate through the rate of tuning as you hold down the button
buttonstate = digitalRead(A0);
if(buttonstate == LOW) {
setincrement();
};
// Check for PIN low to drive IF offset Freq
buttonstate = digitalRead(A5);
if (buttonstate != buttonstate2){
if(buttonstate == LOW) {
lcd.setCursor(15,1);
lcd.print(".");
GoIF = 0;
buttonstate2 = buttonstate;
sendFrequency(rx);
}
else{
lcd.setCursor(15,1);
lcd.print(" ");
GoIF = 1;
buttonstate2 = buttonstate;
sendFrequency(rx);
};
};
// Write the frequency to memory if not stored and 2 seconds have passed since the last frequency change.
if(memstatus == 0){
if(timepassed+2000 < millis()){
storeMEM();
}
}
}
// Interrupt routine to catch the rotary encoder
ISR(PCINT2_vect) {
unsigned char result = r.process();
if (result) {
if (result == DIR_CW){rx=rx+increment;}
else {rx=rx-increment;};
if (rx >=1200){rx=rx2;}; // UPPER VFO LIMIT
if (rx <=100){rx=rx2;}; // LOWER VFO LIMIT
}
}
// frequency calc from datasheet page 8 = <sys clock> * <frequency tuning word>/2^32
void sendFrequency(double frequency) {
if (GoIF == 1){frequency=frequency-iffreq;}; //If pin = low, subtract the IF frequency.
int32_t freq = frequency * 4294967295/125000000; // note 125 MHz clock on 9850. You can make 'slight' tuning variations here by adjusting the clock frequency.
for (int b=0; b<4; b++, freq>>=8) {
tfr_byte(freq & 0xFF);
}
tfr_byte(0x000); // Final control byte, all 0 for 9850 chip
pulseHigh(FQ_UD); // Done! Should see output
}
// transfers a byte, a bit at a time, LSB first to the 9850 via serial DATA line
void tfr_byte(byte data)
{
for (int i=0; i<8; i++, data>>=1) {
digitalWrite(DATA, data & 0x01);
pulseHigh(W_CLK); //after each bit sent, CLK is pulsed high
}
}
void setincrement(){
if(increment == 10){increment = 50; hertz = "50 Hz"; hertzPosition=5;}
else if (increment == 50){increment = 100; hertz = "100 Hz"; hertzPosition=4;}
else if (increment == 100){increment = 1; hertz="1 Hz"; hertzPosition=6;}
else if (increment == 500){increment = 1000; hertz="1 Khz"; hertzPosition=6;}
//else if (increment == 1000){increment = 2500; hertz="2.5 Khz"; hertzPosition=4;}
//else if (increment == 2500){increment = 5000; hertz="5 Khz"; hertzPosition=6;}
//else if (increment == 5000){increment = 10000; hertz="10 Khz"; hertzPosition=5;}
//else if (increment == 10000){increment = 100000; hertz="100 Khz"; hertzPosition=4;}
//else if (increment == 100000){increment = 1000000; hertz="1 Mhz"; hertzPosition=6;}
else{increment = 10; hertz = "10 Hz"; hertzPosition=5;};
lcd.setCursor(0,1);
lcd.print(" ");
lcd.setCursor(hertzPosition,1);
lcd.print(hertz);
delay(250); // Adjust this delay to speed up/slow down the button menu scroll speed.
};
void showFreq(){
millions = int(rx/1000000);
hundredthousands = ((rx/100000)%10);
tenthousands = ((rx/10000)%10);
thousands = ((rx/1000)%10);
hundreds = ((rx/100)%10);
tens = ((rx/10)%10);
ones = ((rx/1)%10);
lcd.setCursor(0,0);
lcd.print(" ");
if (millions > 9){lcd.setCursor(1,0);}
else{lcd.setCursor(3,0);} //hova írja ki a kijelzőn!
// lcd.print(millions);
// lcd.print(".");
//lcd.print(hundredthousands);
// lcd.print(tenthousands);
lcd.print(thousands);
// lcd.print(".");
lcd.print(hundreds);
lcd.print(tens);
lcd.print(ones);
lcd.print(" Hz ");
timepassed = millis();
memstatus = 0; // Trigger memory write
};
void storeMEM(){
//Write each frequency section to a EPROM slot. Yes, it's cheating but it works!
EEPROM.write(0,millions);
EEPROM.write(1,hundredthousands);
EEPROM.write(2,tenthousands);
EEPROM.write(3,thousands);
EEPROM.write(4,hundreds);
EEPROM.write(5,tens);
EEPROM.write(6,ones);
memstatus = 1; // Let program know memory has been written
};