Bonjour,
De retour, donc j'ai essayé de changer mes ports et ça fonctionne bien , je suis en :
- ws : 4
- swk : 25
- sd : 13
J'ai donc essayé d'incorporer mon programme dans son programme, pas d'erreur , j'ai bien mes valeurs dans ma console arduino mais pas d'interaction sur mon écran.
J'ai trouvé la source du problème c'est mes boucles avec les durées, si je met pas la boucle, j'arrive bien à visualiser mes valeurs .
J'ai essayé de ne pas le mettre dans la boucle , le programme fonctionne mais n'affiche rien sur mon écran tft
mes boucles :
if (maintenant - chrono3 >= duree3) {
Serial.println("Mise à jour des valeurs 3");
temp();
hum();
pression();
chrono3 = maintenant;
}
Pourrais-tu m'aider ? car j'aimerais et j'ai pas le choix de garder mes boucles
voici mon code
//bruit
#include <driver/i2s.h>
#include "sos-iir-filter.h"
//
// Configuration
//
#define LEQ_PERIOD 1 // second(s)
#define WEIGHTING C_weighting // Also avaliable: 'C_weighting' or 'None' (Z_weighting)
#define LEQ_UNITS "LAeq" // customize based on above weighting used
#define DB_UNITS "dBA" // customize based on above weighting used
// NOTE: Some microphones require at least DC-Blocker filter
#define MIC_EQUALIZER SPH0645LM4H_B_RB // See below for defined IIR filters or set to 'None' to disable
#define MIC_OFFSET_DB 3.0103 // Default offset (sine-wave RMS vs. dBFS). Modify this value for linear calibration
// Customize these values from microphone datasheet
#define MIC_SENSITIVITY -26 // dBFS value expected at MIC_REF_DB (Sensitivity value from datasheet)
#define MIC_REF_DB 94.0 // Value at which point sensitivity is specified in datasheet (dB)
#define MIC_OVERLOAD_DB 116.0 // dB - Acoustic overload point
#define MIC_NOISE_DB 29 // dB - Noise floor
#define MIC_BITS 24 // valid number of bits in I2S data
#define MIC_CONVERT(s) (s >> (SAMPLE_BITS - MIC_BITS))
#define MIC_TIMING_SHIFT 1 // Set to one to fix MSB timing for some microphones, i.e. SPH0645LM4H-x
// Calculate reference amplitude value at compile time
constexpr double MIC_REF_AMPL = pow(10, double(MIC_SENSITIVITY)/20) * ((1<<(MIC_BITS-1))-1);
//
// Below ones are just example for my board layout, put here the pins you will use
//
#define I2S_WS 4
#define I2S_SCK 25
#define I2S_SD 13
// I2S peripheral to use (0 or 1)
#define I2S_PORT I2S_NUM_0
//
// IIR Filters
//
// DC-Blocker filter - removes DC component from I2S data
// See: https://www.dsprelated.com/freebooks/filters/DC_Blocker.html
// a1 = -0.9992 should heavily attenuate frequencies below 10Hz
SOS_IIR_Filter DC_BLOCKER = {
gain: 1.0,
sos: {{-1.0, 0.0, +0.9992, 0}}
};
//
// Knowles SPH0645LM4H-B, rev. B
// https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
// B ~= [1.001234, -1.991352, 0.990149]
// A ~= [1.0, -1.993853, 0.993863]
// With additional DC blocking component
SOS_IIR_Filter SPH0645LM4H_B_RB = {
gain: 1.00123377961525,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-1.0, 0.0, +0.9992, 0}, // DC blocker, a1 = -0.9992
{-1.988897663539382, +0.988928479008099, +1.993853376183491, -0.993862821429572}
}
};
//
// Weighting filters
//
//
// A-weighting IIR Filter, Fs = 48KHz
// (By Dr. Matt L., Source: https://dsp.stackexchange.com/a/36122)
// B = [0.169994948147430, 0.280415310498794, -1.120574766348363, 0.131562559965936, 0.974153561246036, -0.282740857326553, -0.152810756202003]
// A = [1.0, -2.12979364760736134, 0.42996125885751674, 1.62132698199721426, -0.96669962900852902, 0.00121015844426781, 0.04400300696788968]
SOS_IIR_Filter A_weighting = {
gain: 0.169994948147430,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-2.00026996133106, +1.00027056142719, -1.060868438509278, -0.163987445885926},
{+4.35912384203144, +3.09120265783884, +1.208419926363593, -0.273166998428332},
{-0.70930303489759, -0.29071868393580, +1.982242159753048, -0.982298594928989}
}
};
//
// C-weighting IIR Filter, Fs = 48KHz
// Designed by invfreqz curve-fitting, see respective .m file
// B = [-0.49164716933714026, 0.14844753846498662, 0.74117815661529129, -0.03281878334039314, -0.29709276192593875, -0.06442545322197900, -0.00364152725482682]
// A = [1.0, -1.0325358998928318, -0.9524000181023488, 0.8936404694728326 0.2256286147169398 -0.1499917107550188, 0.0156718181681081]
SOS_IIR_Filter C_weighting = {
gain: -0.491647169337140,
sos: {
{+1.4604385758204708, +0.5275070373815286, +1.9946144559930252, -0.9946217070140883},
{+0.2376222404939509, +0.0140411206016894, -1.3396585608422749, -0.4421457807694559},
{-2.0000000000000000, +1.0000000000000000, +0.3775800047420818, -0.0356365756680430}
}
};
//
// Sampling
//
#define SAMPLE_RATE 48000 // Hz, fixed to design of IIR filters
#define SAMPLE_BITS 32 // bits
#define SAMPLE_T int32_t
#define SAMPLES_SHORT (SAMPLE_RATE / 8) // ~125ms
#define SAMPLES_LEQ (SAMPLE_RATE * LEQ_PERIOD)
#define DMA_BANK_SIZE (SAMPLES_SHORT / 16)
#define DMA_BANKS 32
// Data we push to 'samples_queue'
struct sum_queue_t {
// Sum of squares of mic samples, after Equalizer filter
float sum_sqr_SPL;
// Sum of squares of weighted mic samples
float sum_sqr_weighted;
// Debug only, FreeRTOS ticks we spent processing the I2S data
uint32_t proc_ticks;
};
QueueHandle_t samples_queue;
// Static buffer for block of samples
float samples[SAMPLES_SHORT] __attribute__((aligned(4)));
//
// I2S Microphone sampling setup
//
void mic_i2s_init() {
// Setup I2S to sample mono channel for SAMPLE_RATE * SAMPLE_BITS
// NOTE: Recent update to Arduino_esp32 (1.0.2 -> 1.0.3)
// seems to have swapped ONLY_LEFT and ONLY_RIGHT channels
const i2s_config_t i2s_config = {
mode: i2s_mode_t(I2S_MODE_MASTER | I2S_MODE_RX),
sample_rate: SAMPLE_RATE,
bits_per_sample: i2s_bits_per_sample_t(SAMPLE_BITS),
channel_format: I2S_CHANNEL_FMT_ONLY_LEFT,
communication_format: i2s_comm_format_t(I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB),
intr_alloc_flags: ESP_INTR_FLAG_LEVEL1,
dma_buf_count: DMA_BANKS,
dma_buf_len: DMA_BANK_SIZE,
use_apll: true,
tx_desc_auto_clear: false,
fixed_mclk: 0
};
// I2S pin mapping
const i2s_pin_config_t pin_config = {
bck_io_num: I2S_SCK,
ws_io_num: I2S_WS,
data_out_num: -1, // not used
data_in_num: I2S_SD
};
i2s_driver_install(I2S_PORT, &i2s_config, 0, NULL);
#if (MIC_TIMING_SHIFT > 0)
// Undocumented (?!) manipulation of I2S peripheral registers
// to fix MSB timing issues with some I2S microphones
REG_SET_BIT(I2S_TIMING_REG(I2S_PORT), BIT(9));
REG_SET_BIT(I2S_CONF_REG(I2S_PORT), I2S_RX_MSB_SHIFT);
#endif
i2s_set_pin(I2S_PORT, &pin_config);
//FIXME: There is a known issue with esp-idf and sampling rates, see:
// https://github.com/espressif/esp-idf/issues/2634
// In the meantime, the below line seems to set sampling rate at ~47999.992Hz
// fifs_req=24576000, sdm0=149, sdm1=212, sdm2=5, odir=2 -> fifs_reached=24575996
//NOTE: This seems to be fixed in ESP32 Arduino 1.0.4, esp-idf 3.2
// Should be safe to remove...
//#include <soc/rtc.h>
//rtc_clk_apll_enable(1, 149, 212, 5, 2);
}
//
// I2S Reader Task
//
// Rationale for separate task reading I2S is that IIR filter
// processing cam be scheduled to different core on the ESP32
// while main task can do something else, like update the
// display in the example
//
// As this is intended to run as separate hihg-priority task,
// we only do the minimum required work with the I2S data
// until it is 'compressed' into sum of squares
//
// FreeRTOS priority and stack size (in 32-bit words)
#define I2S_TASK_PRI 4
#define I2S_TASK_STACK 2048
//
void mic_i2s_reader_task(void* parameter) {
mic_i2s_init();
// Discard first block, microphone may have startup time (i.e. INMP441 up to 83ms)
size_t bytes_read = 0;
i2s_read(I2S_PORT, &samples, SAMPLES_SHORT * sizeof(int32_t), &bytes_read, portMAX_DELAY);
while (true) {
// Block and wait for microphone values from I2S
//
// Data is moved from DMA buffers to our 'samples' buffer by the driver ISR
// and when there is requested ammount of data, task is unblocked
//
// Note: i2s_read does not care it is writing in float[] buffer, it will write
// integer values to the given address, as received from the hardware peripheral.
i2s_read(I2S_PORT, &samples, SAMPLES_SHORT * sizeof(SAMPLE_T), &bytes_read, portMAX_DELAY);
TickType_t start_tick = xTaskGetTickCount();
// Convert (including shifting) integer microphone values to floats,
// using the same buffer (assumed sample size is same as size of float),
// to save a bit of memory
SAMPLE_T* int_samples = (SAMPLE_T*)&samples;
for(int i=0; i<SAMPLES_SHORT; i++) samples[i] = MIC_CONVERT(int_samples[i]);
sum_queue_t q;
// Apply equalization and calculate Z-weighted sum of squares,
// writes filtered samples back to the same buffer.
q.sum_sqr_SPL = MIC_EQUALIZER.filter(samples, samples, SAMPLES_SHORT);
// Apply weighting and calucate weigthed sum of squares
q.sum_sqr_weighted = WEIGHTING.filter(samples, samples, SAMPLES_SHORT);
// Debug only. Ticks we spent filtering and summing block of I2S data
q.proc_ticks = xTaskGetTickCount() - start_tick;
// Send the sums to FreeRTOS queue where main task will pick them up
// and further calcualte decibel values (division, logarithms, etc...)
xQueueSend(samples_queue, &q, portMAX_DELAY);
}
}
//BME280
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BME280 bme; // I2C
unsigned long delayTime;
//Ecran
#include <SPI.h>
#include "Adafruit_GFX.h"
#include "Adafruit_HX8357.h"
#ifdef ESP32
#define STMPE_CS 32
#define TFT_CS 15
#define TFT_DC 33
#define SD_CS 14
#endif
#define TFT_RST -1
// Use hardware SPI and the above for CS/DC
Adafruit_HX8357 tft = Adafruit_HX8357(TFT_CS, TFT_DC, TFT_RST);
//image
#include <SdFat.h> // SD card & FAT filesystem library
#include <Adafruit_SPIFlash.h> // SPI / QSPI flash library
#include <Adafruit_ImageReader.h> // Image-reading functions
#define USE_SD_CARD
#if defined(USE_SD_CARD)
SdFat SD; // SD card filesystem
Adafruit_ImageReader reader(SD); // Image-reader object, pass in SD filesys
#else
// SPI or QSPI flash filesystem (i.e. CIRCUITPY drive)
#if defined(__SAMD51__) || defined(NRF52840_XXAA)
Adafruit_FlashTransport_QSPI flashTransport(PIN_QSPI_SCK, PIN_QSPI_CS,
PIN_QSPI_IO0, PIN_QSPI_IO1, PIN_QSPI_IO2, PIN_QSPI_IO3);
#else
#if (SPI_INTERFACES_COUNT == 1)
Adafruit_FlashTransport_SPI flashTransport(SS, &SPI);
#else
Adafruit_FlashTransport_SPI flashTransport(SS1, &SPI1);
#endif
#endif
Adafruit_SPIFlash flash(&flashTransport);
FatFileSystem filesys;
Adafruit_ImageReader reader(filesys); // Image-reader, pass in flash filesys
#endif
Adafruit_Image img; // An image loaded into RAM
int32_t width = 0, // BMP image dimensions
height = 0;
#include <Fonts/FreeSerifBold18pt7b.h>
#include <Fonts/FreeSerif18pt7b.h>
// tft delay
uint32_t chrono1;
const uint32_t duree1 = 5000; // en ms = 1 minute 60 000
uint32_t chrono2;
const uint32_t duree2 = 10000; // en ms = 3 minutes 180 000
uint32_t chrono3;
const uint32_t duree3 = 1000; // en ms = 5 minutes 300 000
void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
setCpuFrequencyMhz(80); // It should run as low as 80MHz
//BME280
while(!Serial); // time to get serial running
Serial.println(F("BME280 test"));
unsigned status;
status = bme.begin();
if (!status) {
Serial.println("Could not find a valid BME280 sensor, check wiring, address, sensor ID!");
Serial.print("SensorID was: 0x"); Serial.println(bme.sensorID(),16);
Serial.print(" ID of 0x60 represents a BME 280.\n");
while (1) delay(10);
}
Serial.println("-- Default Test --");
Serial.println();
//ECRAN
Serial.println("HX8357D Test!");
tft.begin();
// read diagnostics (optional but can help debug problems)
uint8_t x = tft.readcommand8(HX8357_RDPOWMODE);
Serial.print("Display Power Mode: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(HX8357_RDMADCTL);
Serial.print("MADCTL Mode: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(HX8357_RDCOLMOD);
Serial.print("Pixel Format: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(HX8357_RDDIM);
Serial.print("Image Format: 0x"); Serial.println(x, HEX);
x = tft.readcommand8(HX8357_RDDSDR);
Serial.print("Self Diagnostic: 0x"); Serial.println(x, HEX);
Serial.println(F("Benchmark Time (microseconds)"));
Serial.println(F("Done!"));
//image
ImageReturnCode stat; // Status from image-reading functions
Serial.print(F("Initializing filesystem..."));
#if defined(USE_SD_CARD)
// SD card is pretty straightforward, a single call...
if(!SD.begin(SD_CS, SD_SCK_MHZ(25))) { // ESP32 requires 25 MHz limit
Serial.println(F("SD begin() failed"));
for(;;); // Fatal error, do not continue
}
#else*
// SPI or QSPI flash requires two steps, one to access the bare flash
// memory itself, then the second to access the filesystem within...
if(!flash.begin()) {
Serial.println(F("flash begin() failed"));
for(;;);
}
if(!filesys.begin(&flash)) {
Serial.println(F("filesys begin() failed"));
for(;;);
}
#endif
Serial.println(F("OK!"));
tft.setRotation(1);
tft.fillScreen(HX8357_WHITE);
//tft delay
reader.drawBMP("/imagefondb2.bmp", tft, 0, 0);
}
int counter = 0;
void loop() {
// put your main code here, to run repeatedly:
uint32_t maintenant = millis();
//debut bruit
// Create FreeRTOS queue
samples_queue = xQueueCreate(8, sizeof(sum_queue_t));
// Create the I2S reader FreeRTOS task
// NOTE: Current version of ESP-IDF will pin the task
// automatically to the first core it happens to run on
// (due to using the hardware FPU instructions).
// For manual control see: xTaskCreatePinnedToCore
xTaskCreate(mic_i2s_reader_task, "Mic I2S Reader", I2S_TASK_STACK, NULL, I2S_TASK_PRI, NULL);
sum_queue_t q;
uint32_t Leq_samples = 0;
double Leq_sum_sqr = 0;
double Leq_dB = 0;
// Read sum of samaples, calculated by 'i2s_reader_task'
while (xQueueReceive(samples_queue, &q, portMAX_DELAY)) {
// Calculate dB values relative to MIC_REF_AMPL and adjust for microphone reference
double short_RMS = sqrt(double(q.sum_sqr_SPL) / SAMPLES_SHORT);
double short_SPL_dB = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(short_RMS / MIC_REF_AMPL);
// In case of acoustic overload or below noise floor measurement, report infinty Leq value
if (short_SPL_dB > MIC_OVERLOAD_DB) {
Leq_sum_sqr = INFINITY;
} else if (isnan(short_SPL_dB) || (short_SPL_dB < MIC_NOISE_DB)) {
Leq_sum_sqr = -INFINITY;
}
// Accumulate Leq sum
Leq_sum_sqr += q.sum_sqr_weighted;
Leq_samples += SAMPLES_SHORT;
// When we gather enough samples, calculate new Leq value
if (Leq_samples >= SAMPLE_RATE * LEQ_PERIOD) {
double Leq_RMS = sqrt(Leq_sum_sqr / Leq_samples);
Leq_dB = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(Leq_RMS / MIC_REF_AMPL);
Leq_sum_sqr = 0;
Leq_samples = 0;
// Serial output, customize (or remove) as needed
Serial.printf("%.1f\n", Leq_dB);
Serial.print("test");
if (Leq_dB > 60) {
Serial.println("haut");
} else if (isnan(Leq_dB) || (Leq_dB < 60)) {
Serial.println("bas");
}
//BME280
printValues();
delay(3000);
if (maintenant - chrono3 >= duree3) {
Serial.println("Mise à jour des valeurs 3");
temp();
hum();
pression();
chrono3 = maintenant;
}
// Debug only
//Serial.printf("%u processing ticks\n", q.proc_ticks);
}
}
}
void temp() {
tft.fillRect(50,250,70,50,HX8357_WHITE); //(x,y,width,heigh,color)
tft.setFont(&FreeSerifBold18pt7b);
tft.setCursor(55, 285);
tft.setTextColor(HX8357_BLACK);
tft.println(bme.readTemperature(),1);
}
void hum(){
tft.fillRect(175,250,50,50,HX8357_WHITE); //(x,y,width,heigh,color)
tft.setFont(&FreeSerifBold18pt7b);
tft.setCursor(182, 285);
tft.setTextColor(HX8357_BLACK);
tft.println(bme.readHumidity(),0);
}
void pression() {
tft.fillRect(310,250,90,50,HX8357_WHITE); //(x,y,width,heigh,color)
tft.setFont(&FreeSerifBold18pt7b);
tft.setCursor(320, 285);
tft.setTextColor(HX8357_BLACK);
tft.println((bme.readPressure()/100.0F),0);
}
void printValues() {
Serial.print("Température = ");
Serial.print(bme.readTemperature());
Serial.println(" °C");
Serial.print("Pression = ");
Serial.print(bme.readPressure() / 100.0F);
Serial.println(" hPa");
Serial.print("Humidité = ");
Serial.print(bme.readHumidity());
Serial.println(" %");
Serial.println("===================");
Serial.println();
}