Difference in A0 port or ADC port?

Hi

I want to read a temperature meat probe using a ESP32 Devkit V1 - Doit.
However, when i test the code on a Arduino Uno with the A0 port, it reads the temperature perfectly.
When i switch over to the ESP32 and use the ADC port 34, it can't read it anymore.
Is there a big difference in the A0 and ADC ports? Or am i using the wrong one?

I'm currently only using the FOOD_PIN.

Code:

// Generic config
#define TEMP_READ_DELAY 1500 // 10 seconds between temp reading
#define BAUD_RATE 9600 // Baudrate for serial monitor and ESP

// Temperature Probes 
#define TEMPERATURENOMINAL 25
#define NUMSAMPLES 20 // Number of samples to smooth input

#define FOOD_PIN 34
#define FOOD_THERMISTORNOMINAL 99565.07 // resistance at 25 degrees C 
#define FOOD_BCOEFFICIENT 3997.06 // The beta coefficient of the thermistor
#define FOOD_SERIESRESISTOR 22000 // the value of the 'other' resistor
 
#define GRILL_PIN 1
#define GRILL_THERMISTORNOMINAL 1000000 // resistance at 25 degrees C 
#define GRILL_BCOEFFICIENT 4800 // The beta coefficient of the thermistor
#define GRILL_SERIESRESISTOR 1000000 // the value of the 'other' resistor

// ESP8266 Config
// Lots of this was pulled from https://github.com/sparkfun/SparkFun_ESP8266_AT_Arduino_Library

float samples[NUMSAMPLES];

void setup() {
  Serial.begin(BAUD_RATE);
}

void loop() {

  // ** General flow ** 
  // 1) Get analog reading from pin
  // 2) Convert the analog input to resistance
  // 3) Calculate degrees C from the resistance
  // 4) Convert that to F
  // 5) Write those values to lcd
  // 6) Send them to a server
  // 7) Wait x seconds and repeat

  float foodAverage = sampleTempData(FOOD_PIN, NUMSAMPLES);
  float foodResistance = convertAnalogToResistance(foodAverage, FOOD_SERIESRESISTOR);
  float foodDegC = calculateCFromResistance(foodResistance, FOOD_THERMISTORNOMINAL, FOOD_BCOEFFICIENT, TEMPERATURENOMINAL);
  float foodDegF = convertCtoF(foodDegC);

  float grillAverage = sampleTempData(GRILL_PIN, NUMSAMPLES);
  float grillResistance = convertAnalogToResistance(grillAverage, GRILL_SERIESRESISTOR);
  float grillDegC = calculateCFromResistance(grillResistance, GRILL_THERMISTORNOMINAL, GRILL_BCOEFFICIENT, TEMPERATURENOMINAL);
  float grillDegF = convertCtoF(grillDegC);

  // Update temps on display
  writeTempDatatoSerial(grillDegC, foodDegC);
  
  Serial.println("--------------");
  
  delay(TEMP_READ_DELAY);
}

/**
 * Samples the analog input numSamples number of times to smooth out the final value
 */
float sampleTempData(int pin, int numSamples){
  uint8_t i;
  float average;
 
  // take N samples in a row, with a slight delay
  for (i=0; i< numSamples; i++) {
   samples[i] = analogRead(pin);
   delay(10);
  }
 
  // average all the samples out
  average = 0;
  for (i=0; i< numSamples; i++) {
     average += samples[i];
  }
  average /= numSamples;

  Serial.print("Average analog reading "); 
  Serial.println(average);

  return average;
}

/**
 * Helper method to convert analog data to resistance. Taken from https://learn.adafruit.com/thermistor/using-a-thermistor
 */
float convertAnalogToResistance(float avg, long resistor){
  avg = 1023 / avg - 1;
  avg = resistor / avg;
  Serial.print("Thermistor resistance "); 
  Serial.println(avg);
  return avg;
}

/**
 * Helper method to calculate C from a resistance. This taken from https://learn.adafruit.com/thermistor/using-a-thermistor
 */
float calculateCFromResistance(float resistance, long thermNominal, int coefficient, int tempNominal){
  float steinhart;
  steinhart = resistance / thermNominal;     // (R/Ro)
  steinhart = log(steinhart);                  // ln(R/Ro)
  steinhart /= coefficient;                   // 1/B * ln(R/Ro)
  steinhart += 1.0 / (tempNominal + 273.15); // + (1/To)
  steinhart = 1.0 / steinhart;                 // Invert
  steinhart -= 273.15;                         // convert to C
  return steinhart;
}

/**
 * Converts C to F
 */
float convertCtoF(float degC){
  return degC * (9.0/5.0) + 32.0;
}

/**
 * Log the temps to the serial monitor
 */
void writeTempDatatoSerial(float temp1, float temp2){
  Serial.print("Grill: "); 
  Serial.println(temp1, 2);
  Serial.print("Food: ");
  Serial.println(temp2, 2);
}


/**
 * Helper method to convert an int to a char *
 */
char * convertToString(int val){
  String s = String(val);
  Serial.println("S:" + s);
  int strlen = s.length();
  Serial.println("l:" + String(strlen));
  char buf[strlen+1]; // Include null thing
  s.toCharArray(buf, strlen+1);
  Serial.println("buf:" + String(buf));
  return buf;
}

Did you try GPIO_NUM_36 as A0?

Ref this link: GitHub - G6EJD/ESP32-ADC-Accuracy-Improvement-function: A function that improves the default ADC reading accuracy to within 1%

I don’t know what you mean by that?

I can try this function later to make it more accurate. But for the moment i get an inf. result when i run the code on my esp32 but not on my Arduino Uno?

Change

#define FOOD_PIN 34

to

#define FOOD_PIN 36

I’m definitly going to try that when i’m home. But what is difference between the ports?

      GPIO_NUM_36
minus GPIO_NUM_34
________________________
2

ESP32 Analog Input with Arduino IDE | Random Nerd Tutorials.

I’m sorry what?

I am not familiar with the Devkit V1 but the Arduino UNO has a 5V max input on A0. I believe yours has a max of 3V3. If am correct that should solve your problem.

There is no code to change the analog input from 3V3 to 5V it is a hardware thing. You will have to make/acquire a voltage divider to convert the 5V max to 3V3 max. Hopefully you are lucky and have not destroyed the analog input.

Anyone knows or can advice me where to change my code?

Or what code I can use with a ESP32 and 3.3v?

In this sketch I use 3 ESP32 A:D thingies.

/*
   Chappie Weather upgrade/addition
   process wind speed direction and rain fall.
*/
#include "esp32/ulp.h"
//#include "ulptool.h"
#include "driver/rtc_io.h"
#include <WiFi.h>
#include <PubSubClient.h>
#include "certs.h"
#include "sdkconfig.h"
#include "esp_system.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/event_groups.h"
#include <driver/pcnt.h>
#include <driver/adc.h>
#include <SimpleKalmanFilter.h>
#include <ESP32Time.h>
////
ESP32Time rtc;
WiFiClient wifiClient;
PubSubClient MQTTclient(mqtt_server, mqtt_port, wifiClient);
////
float CalculatedVoltage = 0.0f;
float kph = 0.0f;
float rain  = 0.0f;
/*
   PCNT PCNT_UNIT_0, PCNT_CHANNEL_0 GPIO_NUM_15 = pulse input pin
   PCNT PCNT_UNIT_1, PCNT_CHANNEL_0 GPIO_NUM_4 = pulse input pin
*/
pcnt_unit_t pcnt_unit00 = PCNT_UNIT_0; //pcnt unit 0 channel 0
pcnt_unit_t pcnt_unit10 = PCNT_UNIT_1; //pcnt unit 1 channel 0
//
//
hw_timer_t * timer = NULL;
//
#define evtAnemometer  ( 1 << 0 )
#define evtRainFall    ( 1 << 1 )
#define evtParseMQTT   ( 1 << 2 )
EventGroupHandle_t eg;
#define OneMinuteGroup ( evtAnemometer | evtRainFall )
////
QueueHandle_t xQ_Message; // payload and topic queue of MQTT payload and topic
const int payloadSize = 100;
struct stu_message
{
  char payload [payloadSize] = {'\0'};
  String topic ;
} x_message;
////
SemaphoreHandle_t sema_MQTT_KeepAlive; // used to stop all other MQTT thing do's
SemaphoreHandle_t sema_mqttOK; // protect the mqttOK variable.
SemaphoreHandle_t sema_CalculatedVoltage; // protects the CalculatedVoltage variable.
////
int mqttOK = 0; // stores a count value that is used to cause an esp reset
volatile bool TimeSet = false;
////
/*
   Topic topicOK has been subscribed to, the mqtt broker sends out "OK" messages if the client receives an OK message the mqttOK value is set back to zero.
   If the mqttOK count reaches a set point the ESP32 will reset.
*/
////
void IRAM_ATTR mqttCallback(char* topic, byte * payload, unsigned int length)
{
  memset( x_message.payload, '\0', payloadSize ); // clear payload char buffer
  x_message.topic = ""; //clear topic string buffer
  x_message.topic = topic; //store new topic
  memcpy( x_message.payload, payload, length );
  xQueueOverwrite( xQ_Message, (void *) &x_message );// send data to queue
} // void mqttCallback(char* topic, byte* payload, unsigned int length)
////
// interrupt service routine for WiFi events put into IRAM
void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
{
  switch (event) {
    case SYSTEM_EVENT_STA_CONNECTED:
      break;
    case SYSTEM_EVENT_STA_DISCONNECTED:
      log_i("Disconnected from WiFi access point");
      break;
    case SYSTEM_EVENT_AP_STADISCONNECTED:
      log_i("WiFi client disconnected");
      break;
    default: break;
  }
} // void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
////
void IRAM_ATTR onTimer()
{
  BaseType_t xHigherPriorityTaskWoken;
  xEventGroupSetBitsFromISR(eg, OneMinuteGroup, &xHigherPriorityTaskWoken);
} // void IRAM_ATTR onTimer()
////
void setup()
{
  eg = xEventGroupCreate(); // get an event group handle
  x_message.topic.reserve(100);
  adc1_config_width(ADC_WIDTH_12Bit);
  adc1_config_channel_atten(ADC1_CHANNEL_6, ADC_ATTEN_DB_11);// using GPIO 34 wind direction
  adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11);// using GPIO 39 current
  adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11);// using GPIO 36 battery volts

  // hardware timer 4 set for one minute alarm
  timer = timerBegin( 3, 80, true );
  timerAttachInterrupt( timer, &onTimer, true );
  timerAlarmWrite(timer, 60000000, true);
  timerAlarmEnable(timer);
  /* Initialize PCNT's counter */
  int PCNT_H_LIM_VAL         = 3000;
  int PCNT_L_LIM_VAL         = -10;
  // 1st PCNT counter
  // Anemometer
  pcnt_config_t pcnt_config  = {};
  pcnt_config.pulse_gpio_num = GPIO_NUM_15;// Set PCNT input signal and control GPIOs
  pcnt_config.ctrl_gpio_num  = PCNT_PIN_NOT_USED;
  pcnt_config.channel        = PCNT_CHANNEL_0;
  pcnt_config.unit           = PCNT_UNIT_0;
  // What to do on the positive / negative edge of pulse input?
  pcnt_config.pos_mode       = PCNT_COUNT_INC;   // Count up on the positive edge
  pcnt_config.neg_mode       = PCNT_COUNT_DIS;   // Count down disable
  // What to do when control input is low or high?
  pcnt_config.lctrl_mode     = PCNT_MODE_KEEP; // Keep the primary counter mode if low
  pcnt_config.hctrl_mode     = PCNT_MODE_KEEP;    // Keep the primary counter mode if high
  // Set the maximum and minimum limit values to watch
  pcnt_config.counter_h_lim  = PCNT_H_LIM_VAL;
  pcnt_config.counter_l_lim  = PCNT_L_LIM_VAL;
  pcnt_unit_config(&pcnt_config); // Initialize PCNT unit
  // 12.5ns is one APB_CLK cycle 12.5*500, debounce time
  pcnt_set_filter_value( PCNT_UNIT_0, 500); //Configure and enable the input filter, debounce
  pcnt_filter_enable( PCNT_UNIT_0 );
  pcnt_counter_pause( PCNT_UNIT_0 );
  pcnt_counter_clear( PCNT_UNIT_0 );
  pcnt_counter_resume( PCNT_UNIT_0); // start the show
  // setup 2nd PCNT
  pcnt_config = {};
  pcnt_config.pulse_gpio_num = GPIO_NUM_4;
  pcnt_config.ctrl_gpio_num  = PCNT_PIN_NOT_USED;
  pcnt_config.channel        = PCNT_CHANNEL_0;
  pcnt_config.unit           = PCNT_UNIT_1;
  pcnt_config.pos_mode       = PCNT_COUNT_INC;
  pcnt_config.neg_mode       = PCNT_COUNT_DIS;
  pcnt_config.lctrl_mode     = PCNT_MODE_KEEP;
  pcnt_config.hctrl_mode     = PCNT_MODE_KEEP;
  pcnt_config.counter_h_lim  = PCNT_H_LIM_VAL;
  pcnt_config.counter_l_lim  = PCNT_L_LIM_VAL;
  pcnt_unit_config(&pcnt_config);
  pcnt_set_filter_value( PCNT_UNIT_1, 500 );
  pcnt_filter_enable  ( PCNT_UNIT_1 );
  pcnt_counter_pause  ( PCNT_UNIT_1 );
  pcnt_counter_clear  ( PCNT_UNIT_1 );
  pcnt_counter_resume ( PCNT_UNIT_1 );
  //
  xQ_Message = xQueueCreate( 1, sizeof(stu_message) );
  //
  sema_CalculatedVoltage = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_CalculatedVoltage );
  sema_mqttOK = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_mqttOK );
  sema_MQTT_KeepAlive = xSemaphoreCreateBinary();
  ///
  xTaskCreatePinnedToCore( MQTTkeepalive, "MQTTkeepalive", 10000, NULL, 5, NULL, 1 );
  xTaskCreatePinnedToCore( fparseMQTT, "fparseMQTT", 10000, NULL, 5, NULL, 1 ); // assign all to core 1, WiFi in use.
  xTaskCreatePinnedToCore( fReadBattery, "fReadBattery", 4000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fReadCurrent, "fReadCurrent", 4000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fWindDirection, "fWindDirection", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fAnemometer, "fAnemometer", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fRainFall, "fRainFall", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fmqttWatchDog, "fmqttWatchDog", 3000, NULL, 3, NULL, 1 ); // assign all to core 1
} //void setup()
static void init_ulp_program()
{
// not sharing this code.
}
////
void fWindDirection( void *pvParameters )
// read the wind direction sensor, return heading in degrees
{
  SimpleKalmanFilter KF_ADC( 1.0f, 1.0f, .01f );
  const TickType_t xFrequency = 100; //delay for mS
  float    adcValue = 0.0f;
  uint64_t TimePastKalman  = esp_timer_get_time();
  float    high = 0.0f;
  float    low = 2000.0f;
  float    ADscale = 3.3f / 4096.0f;
  int      count = 0;
  String   windDirection;
  String   MQTTinfo = "";
  windDirection.reserve(20);
  MQTTinfo.reserve( 150 );
  TickType_t xLastWakeTime = xTaskGetTickCount();
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  for (;;)
  {
    windDirection = "";
    adcValue = float( adc1_get_raw(ADC1_CHANNEL_6) ); //take a raw ADC reading
    KF_ADC.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue = KF_ADC.updateEstimate( adcValue ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    adcValue = adcValue * ADscale;
    if ( (adcValue >= 0.0f) & (adcValue <= .25f )  )
    {
      // log_i( " n" );
      windDirection.concat( "N" );
    }
    if ( (adcValue > .25f) & (adcValue <= .6f ) )
    {
      //  log_i( " e" );
      windDirection.concat( "E" );
    }
    if ( (adcValue > 2.0f) & ( adcValue < 3.3f) )
    {
      //   log_i( " s" );
      windDirection.concat( "S");
    }
    if ( (adcValue >= 1.7f) & (adcValue < 2.0f ) )
    {
      // log_i( " w" );
      windDirection.concat( "W" );
    }
    if ( count >= 30 )
    {
      MQTTinfo.concat( String(kph, 2) );
      MQTTinfo.concat( ",");
      MQTTinfo.concat( windDirection );
      MQTTinfo.concat( ",");
      MQTTinfo.concat( String(rain, 2) );
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
      MQTTclient.publish( topicWSWDRF, MQTTinfo.c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
      count = 0;
    }
    count++;
    MQTTinfo = "";
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete ( NULL );
}
// read rainfall
void fRainFall( void *pvParemeters )
{
  int16_t click = 0; //count tipping bucket clicks
  pcnt_counter_pause( PCNT_UNIT_1 );
  pcnt_counter_clear( PCNT_UNIT_1 );
  pcnt_counter_resume( PCNT_UNIT_1 );
  for  (;;)
  {
    xEventGroupWaitBits (eg, evtRainFall, pdTRUE, pdTRUE, portMAX_DELAY);
    if ( (rtc.getHour(true) == 23) && (rtc.getMinute() == 59) )
    {
      pcnt_counter_pause( PCNT_UNIT_1 );
      rain = 0.0f;
      pcnt_counter_clear( PCNT_UNIT_1 );
      pcnt_counter_resume( PCNT_UNIT_1 );
    } else {
      pcnt_counter_pause( PCNT_UNIT_1 );
      pcnt_get_counter_value( PCNT_UNIT_1, &click );
      if ( click != 0 )
      {
        rain = rain + (0.2794f * (float)click);// 0.2794mm of rain per click
        pcnt_counter_clear( PCNT_UNIT_1 );
        log_i( "count %d, rain rain = %f mm", click, rain );
      }
      pcnt_counter_resume( PCNT_UNIT_1 );
      click = 0;
    }
  }
  vTaskDelete ( NULL );
}
////
void fAnemometer( void *pvParameters )
{
  int16_t count = 0;
  pcnt_counter_clear(PCNT_UNIT_0);
  pcnt_counter_resume(PCNT_UNIT_0);
  for (;;)
  {
    xEventGroupWaitBits (eg, evtAnemometer, pdTRUE, pdTRUE, portMAX_DELAY);
    pcnt_counter_pause( PCNT_UNIT_0 );
    pcnt_get_counter_value( PCNT_UNIT_0, &count);
    kph = 2.4f * ((float)count / 60.0f);// A wind speed of 2.4km/h causes the switch to close once per second
    //log_i( "%f", kph );
    pcnt_counter_clear( PCNT_UNIT_0 );
    pcnt_counter_resume( PCNT_UNIT_0 );
  }
  vTaskDelete ( NULL );
}
//////
void fmqttWatchDog( void * paramater )
{
  int UpdateImeTrigger = 86400; //seconds in a day
  int UpdateTimeInterval = 86300; // 1st time update in 100 counts
  int maxNonMQTTresponse = 60;
  for (;;)
  {
    vTaskDelay( 1000 );
    if ( mqttOK >= maxNonMQTTresponse )
    {
      ESP.restart();
    }
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
    mqttOK++;
    xSemaphoreGive( sema_mqttOK );
    UpdateTimeInterval++; // trigger new time get
    if ( UpdateTimeInterval >= UpdateImeTrigger )
    {
      TimeSet = false; // sets doneTime to false to get an updated time after a days count of seconds
      UpdateTimeInterval = 0;
    }
  }
  vTaskDelete( NULL );
}
//////
void fparseMQTT( void *pvParameters )
{
  struct stu_message px_message;
  for (;;)
  {
    if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    {
      // parse the time from the OK message and update MCU time
      if ( String(px_message.topic) == topicOK )
      {
        if ( !TimeSet)
        {
          String temp = "";
          temp =  px_message.payload[0];
          temp += px_message.payload[1];
          temp += px_message.payload[2];
          temp += px_message.payload[3];
          int year =  temp.toInt();
          temp = "";
          temp =  px_message.payload[5];
          temp += px_message.payload[6];
          int month =  temp.toInt();
          temp =  "";
          temp =  px_message.payload[8];
          temp += px_message.payload[9];
          int day =  temp.toInt();
          temp = "";
          temp = px_message.payload[11];
          temp += px_message.payload[12];
          int hour =  temp.toInt();
          temp = "";
          temp = px_message.payload[14];
          temp += px_message.payload[15];
          int min =  temp.toInt();
          rtc.setTime( 0, min, hour, day, month, year );
          log_i( "rtc  %s ", rtc.getTime() );
          TimeSet = true;
        }
      }
      //
    } //if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
    mqttOK = 0;
    xSemaphoreGive( sema_mqttOK );
  }
} // void fparseMQTT( void *pvParameters )#include <ESP32Time.h>
//////
void fReadCurrent( void * parameter )
{
  const TickType_t xFrequency = 1000; //delay for mS
  const float mVperAmp        = 185.0f;
  float    ADbits             = 4096.0f;
  float    ref_voltage        = 3.3f;
  float    mA                 = 0.0f;
  float    adcValue           = 0.0f;
  float    Voltage            = 0.0f;
  float    Power              = 0.0f;
  float    offSET             = 0.0f;
  int      printCount         = 0;
  uint64_t TimePastKalman     = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  SimpleKalmanFilter KF_I( 1.0f, 1.0f, .01f );
  /*
     185mv/A = 5 AMP MODULE
     100mv/A = 20 amp module
     66mv/A = 30 amp module
  */
  String powerInfo = "";
  powerInfo.reserve( 150 );
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  TickType_t xLastWakeTime = xTaskGetTickCount();
  for (;;)
  {
    adc1_get_raw(ADC1_CHANNEL_3); // read once discard reading
    adcValue = ( (float)adc1_get_raw(ADC1_CHANNEL_3) );
    //log_i( "adcValue I = %f", adcValue );
    Voltage = ( (adcValue * ref_voltage) / ADbits ) + offSET; // Gets you mV
    mA = Voltage / mVperAmp; // get amps
    KF_I.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    mA = KF_I.updateEstimate( mA ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    printCount++;
    if ( printCount == 60 )
    {
      xSemaphoreTake( sema_CalculatedVoltage, portMAX_DELAY);
      Power = CalculatedVoltage * mA;
      //log_i( "Voltage=%f mA=%f Power=%f", CalculatedVoltage, mA, Power );
      printCount = 0;
      powerInfo.concat( String(CalculatedVoltage, 2) );
      xSemaphoreGive( sema_CalculatedVoltage );
      powerInfo.concat( ",");
      powerInfo.concat( String(mA, 4) );
      powerInfo.concat( ",");
      powerInfo.concat( String(Power, 4) );
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
      MQTTclient.publish( topicPower, powerInfo.c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
      powerInfo = "";
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete( NULL );
} //void fReadCurrent( void * parameter )
////
void fReadBattery( void * parameter )
{
  const float r1 = 50500.0f; // R1 in ohm, 50K
  const float r2 = 10000.0f; // R2 in ohm, 10k potentiometer
  const TickType_t xFrequency = 1000; //delay for mS
  float    adcValue = 0.0f;
  float    Vbatt = 0.0f;
  int      printCount = 0;
  float    vRefScale = (3.3f / 4096.0f) * ((r1 + r2) / r2);
  uint64_t TimePastKalman  = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  SimpleKalmanFilter KF_ADC_b( 1.0f, 1.0f, .01f );
  TickType_t xLastWakeTime = xTaskGetTickCount();
  for (;;)
  {
    adc1_get_raw(ADC1_CHANNEL_0); //read and discard
    adcValue = float( adc1_get_raw(ADC1_CHANNEL_0) ); //take a raw ADC reading
    KF_ADC_b.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue = KF_ADC_b.updateEstimate( adcValue ); // apply simple Kalman filter
    Vbatt = adcValue * vRefScale;
    xSemaphoreTake( sema_CalculatedVoltage, portMAX_DELAY );
    CalculatedVoltage = Vbatt;
    xSemaphoreGive( sema_CalculatedVoltage );
    
      printCount++;
      if ( printCount == 3 )
      {
      //log_i( "Vbatt %f", Vbatt );
      printCount = 0;
      }
    
    TimePastKalman = esp_timer_get_time(); // time of update complete
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    //log_i( "fReadBattery %d",  uxTaskGetStackHighWaterMark( NULL ) );
  }
  vTaskDelete( NULL );
}
////
void MQTTkeepalive( void *pvParameters )
{
  sema_MQTT_KeepAlive   = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_MQTT_KeepAlive ); // found keep alive can mess with a publish, stop keep alive during publish
  // setting must be set before a mqtt connection is made
  MQTTclient.setKeepAlive( 90 ); // setting keep alive to 90 seconds makes for a very reliable connection, must be set before the 1st connection is made.
  for (;;)
  {
    //check for a is-connected and if the WiFi 'thinks' its connected, found checking on both is more realible than just a single check
    if ( (wifiClient.connected()) && (WiFi.status() == WL_CONNECTED) )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.loop();
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
    else {
      log_i( "MQTT keep alive found MQTT status %s WiFi status %s", String(wifiClient.connected()), String(WiFi.status()) );
      if ( !(wifiClient.connected()) || !(WiFi.status() == WL_CONNECTED) )
      {
        connectToWiFi();
      }
      connectToMQTT();
    }
    vTaskDelay( 250 ); //task runs approx every 250 mS
  }
  vTaskDelete ( NULL );
}
////
void connectToWiFi()
{
  int TryCount = 0;
  while ( WiFi.status() != WL_CONNECTED )
  {
    TryCount++;
    WiFi.disconnect();
    WiFi.begin( SSID, PASSWORD );
    vTaskDelay( 4000 );
    if ( TryCount == 10 )
    {
      ESP.restart();
    }
  }
  WiFi.onEvent( WiFiEvent );
} // void connectToWiFi()
////
void connectToMQTT()
{
  MQTTclient.setKeepAlive( 90 ); // needs be made before connecting
  byte mac[5];
  WiFi.macAddress(mac);
  String clientID = String(mac[0]) + String(mac[4]) ; // use mac address to create clientID
  while ( !MQTTclient.connected() )
  {
    // boolean connect(const char* id, const char* user, const char* pass, const char* willTopic, uint8_t willQos, boolean willRetain, const char* willMessage);
    MQTTclient.connect( clientID.c_str(), mqtt_username, mqtt_password, NULL , 1, true, NULL );
    vTaskDelay( 250 );
  }
  MQTTclient.setCallback( mqttCallback );
  MQTTclient.subscribe( topicOK );
} // void connectToMQTT()
////
void loop() {}

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.