Enabling Timer0 for using delay()

I need 3 SPWM signals which are 120 degrees out of phase to each other, and their inverted signals. But the original wave and its corresponding inverted wave should have a time delay of 1us in between them. eg., phase 1 and inverted phase 1 signal should have a delay of 1 us. similarly for phase 2 and phase 3.
For this I got a code from Arduino forum which is given below. But in the code, Timer 0 is disabled and so delay(), millis() etc won't work. But I did not understand why Timer 0 is disabled. I think there is no need of disabling it. So can I comment out this line, so that I can use delay() and millis()? Should I add anything else to the code to enable timer 0?

So here is the code:
/*
*

  • DDS Sine Generator mit ATMEGS 328
  • Timer2 generates the 31250 KHz Clock Interrupt
  • Use Timer2 Interrupt to change duty cycle for the output PWM signals
  • D. Tolken
  • 120 degress out of phase signals for 3 phase BLDC motor controller
  • CPUT, South Africa

a Huge thumbs up and thanks must be given to Martin Nawrath for the developement of the original code to generate a sine wave using PWM and a LPF.
Link:
http://interface.khm.de/index.php/lab/experiments/arduino-dds-sinewave-generator/
*/

#include "avr/pgmspace.h" //Store data in flash (program) memory instead of SRAM

// Look Up table of a single sine period divied up into 256 values. Refer to PWM to sine.xls on how the values was calculated
PROGMEM prog_uchar sine256 = {
127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173,176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215,217,219,221,223,225,227,229,231,233,234,236,238,239,240,
242,243,244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254,254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245,244,243,242,240,239,238,236,234,233,231,229,227,225,223,
221,219,217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178,176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130,127,124,121,118,115,111,108,105,102,99,96,93,90,87,84,81,78,
76,73,70,67,64,62,59,56,54,51,49,46,44,42,39,37,35,33,31,29,27,25,23,21,20,18,16,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,16,18,20,21,23,25,27,29,31,
33,35,37,39,42,44,46,49,51,54,56,59,62,64,67,70,73,76,78,81,84,87,90,93,96,99,102,105,108,111,115,118,121,124

};
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //define a bit to have the properties of a clear bit operator
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))//define a bit to have the properties of a set bit operator

int PWM1= 11;// PWM1 output, phase 1
int PWM2 = 3; //[WM2 ouput, phase 2
int PWM3 = 10; //PWM3 output, phase 3
int offset_1 = 85; //offset 1 is 120 degrees out of phase with previous phase, Refer to PWM to sine.xls
int offset_2 = 170; //offset 2 is 120 degrees out of phase with offset 1. Refer to PWM to sine.xls
int program_exec_time = 6; //monitor how quickly the interrupt trigger
int ISR_exec_time = 7; //monitor how long the interrupt takes

double dfreq;
const double refclk=31376.6; // measured output frequency

// variables used inside interrupt service declared as voilatile
volatile byte current_count; // Keep track of where the current count is in sine 256 array
volatile byte ms4_delay; //variable used to generate a 4ms delay
volatile byte c4ms; // after every 4ms this variable is incremented, its used to create a delay of 1 second
volatile unsigned long phase_accumulator; // pahse accumulator
volatile unsigned long tword_m; // dds tuning word m, refer to DDS_calculator (from Martin Nawrath) for explination.

void setup()
{
pinMode(PWM1, OUTPUT); //sets the digital pin as output
pinMode(PWM2, OUTPUT); //sets the digital pin as output
pinMode(PWM3, OUTPUT); //sets the digital pin as output
pinMode(program_exec_time, OUTPUT); //sets the digital pin as output
pinMode(9, OUTPUT); //sets the digital pin as output
sbi(PORTD,program_exec_time); //Sets the pin
Setup_timer1();
Setup_timer2();

//Disable Timer 1 interrupt to avoid any timing delays
cbi (TIMSK0,TOIE0); //disable Timer0 !!! delay() is now not available
sbi (TIMSK2,TOIE2); //enable Timer2 Interrupt

dfreq=1000.0; //initial output frequency = 1000.o Hz
tword_m=pow(2,32)*dfreq/refclk; //calulate DDS new tuning word

}
void loop()
{
while(1)
{
sbi(PORTD,program_exec_time); //Sets the pin
if (c4ms > 250) // c4ms = 4ms, thus 4ms *250 = 1 second delay
{
c4ms=0; //Reset c4ms
dfreq=analogRead(0); //Read voltage on analog 1 to see desired output frequency, 0V = 0Hz, 5V = 1.023kHz
cbi (TIMSK2,TOIE2); //Disable Timer2 Interrupt
tword_m=pow(2,32)*dfreq/refclk; //Calulate DDS new tuning word
sbi (TIMSK2,TOIE2); //Enable Timer2 Interrupt
}
}
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM, 16000000/510 = 31372.55 Hz clock
void Setup_timer1(void)
{
// Timer1 Clock Prescaler to : 1
sbi (TCCR1B, CS10);
cbi (TCCR1B, CS11);
cbi (TCCR1B, CS12);

// Timer1 PWM Mode set to Phase Correct PWM
cbi (TCCR1A, COM1A0);
sbi (TCCR1A, COM1A1);
cbi (TCCR1A, COM1B0);
sbi (TCCR1A, COM1B1);

// Mode 1 / Phase Correct PWM
sbi (TCCR1A, WGM10);
cbi (TCCR1A, WGM11);
cbi (TCCR1B, WGM12);
cbi (TCCR1B, WGM13);
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM, 16000000/510 = 31372.55 Hz clock
void Setup_timer2()
{
// Timer2 Clock Prescaler to : 1
sbi (TCCR2B, CS20);
cbi (TCCR2B, CS21);
cbi (TCCR2B, CS22);

// Timer2 PWM Mode set to Phase Correct PWM
cbi (TCCR2A, COM2A0); // clear Compare Match
sbi (TCCR2A, COM2A1);
cbi (TCCR2A, COM2B0);
sbi (TCCR2A, COM2B1);

// Mode 1 / Phase Correct PWM
sbi (TCCR2A, WGM20);
cbi (TCCR2A, WGM21);
cbi (TCCR2B, WGM22);
}

//Timer2 Interrupt Service at 31372,550 KHz = 32uSec
//This is the timebase REFCLOCK for the DDS generator
//FOUT = (M (REFCLK)) / (2 exp 32)
//Runtime : 8 microseconds
ISR(TIMER2_OVF_vect)
{
cbi(PORTD,program_exec_time); //Clear the pin
sbi(PORTD,ISR_exec_time); // Sets the pin

phase_accumulator=phase_accumulator+tword_m; //Adds tuning M word to previoud phase accumulator. refer to DDS_calculator (from Martin Nawrath) for explination.
current_count=phase_accumulator >> 24; // use upper 8 bits of phase_accumulator as frequency information

OCR2A=pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
OCR2B=pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1

OCR1A = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
OCR1B = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2

//increment variable ms4_delay every 4mS/125 = milliseconds 32uS
if(ms4_delay++ == 125)
{
c4ms++;
ms4_delay=0; //reset count
}

cbi(PORTD,ISR_exec_time); //Clear the pin
}

Why not try it? Hook up your scope, and see WHY it IS needed.

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.