error: invalid conversion from 'volatile byte' to 'void (*)()'

so continued from the post above

I added code from the fade sketch to make

#include <TFT.h>  // Arduino TFT library
#include <SPI.h>

// pin definition for the Uno
#define cs   10
#define dc   9
#define rst  8

// create an instance of the library
TFT TFTscreen = TFT(cs, dc, rst);

// Specify the pins for the two counter reset buttons and indicator LED

byte sensorInterrupt = 0;  // 0 = pin 2; 1 = pin 3
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitresA;
unsigned long totalMilliLitresB;

unsigned long oldTime;



int rppin = 3;           // the pin that the RimsPump is attached to
int pumpspeed = 0;    // how bright the LED is
int RampAmount = 5;    // how many points to fade the LED by

// the setup routine runs once when you press reset:




void setup() {
  // declare pin 9 to be an output:
  pinMode(rppin, OUTPUT);
{



  TFTscreen.begin();
  TFTscreen.background(0,0,0);
  TFTscreen.stroke(255,255,255);
  TFTscreen.setTextSize(3);
 
  pinMode(rppin, OUTPUT);
  
  // Initialize a serial connection for reporting values to the host
  Serial.begin(9600);
   
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitresA = 0.0;
  totalMilliLitresB = 0.0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  
  
}

void loop() {
  // put your main code here, to run repeatedly:

  if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
   
    
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitresA += flowMilliLitres;
    totalMilliLitresB += flowMilliLitres;
  
    // During testing it can be useful to output the literal pulse count value so you
    // can compare that and the calculated flow rate against the data sheets for the
    // flow sensor. Uncomment the following two lines to display the count value.
   // Serial.print(pulseCount, DEC);
    //Serial.print("  ");
    
    // Write the calculated value to the serial port. Because we want to output a
    // floating point value and print() can't handle floats we have to do some trickery
    // to output the whole number part, then a decimal point, then the fractional part.
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
    Serial.print(int(flowRate));  // Print the integer part of the variable
    Serial.print(".");             // Print the decimal point
    // Determine the fractional part. The 10 multiplier gives us 1 decimal place.
    frac = (flowRate - int(flowRate)) * 10;
    Serial.print(frac, DEC) ;      // Print the fractional part of the variable

    // Print the number of litres flowed in this second
    Serial.print(" ");             // Output separator
    Serial.print(flowMilliLitres);

    // Print the cumulative total of litres flowed since starting
    Serial.print(" ");             // Output separator
    Serial.print(totalMilliLitresA);
    Serial.print(" ");             // Output separator
    Serial.println(totalMilliLitresB);
    
    TFTscreen.stroke(255,255,255);
    TFTscreen.text("Flow:",0,0);
    if(int(flowRate) < 10)
    {
    
    }
    TFTscreen.text("",0,30),
    TFTscreen.print((int)flowRate);   // Print the integer part of the variable
    TFTscreen.text(".",0,30);             // Print the decimal point
    TFTscreen.print(frac, DEC) ;      // Print the fractional part of the variable
    TFTscreen.text(" L/Min",55,30);
    
    TFTscreen.text("",0,70);
    TFTscreen.print(int(totalMilliLitresA / 1000));
    TFTscreen.print("L");
    
    
    TFTscreen.text("",70,70);
    TFTscreen.print(int(totalMilliLitresB / 1000));
    TFTscreen.print("L");
    
    
  
    
    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }
}

/**
 * Invoked by interrupt0 once per rotation of the hall-effect sensor. Interrupt
 * handlers should be kept as small as possible so they return quickly.
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;
}

// set the brightness of pin 9:
  analogWrite(rppin, pumpspeed);

  // change the brightness for next time through the loop:
  pumpspeed = pumpspeed + RampAmount;

  // reverse the direction of the fading at the ends of the fade:
  if (brightness == 0 || brightness
  }
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
}

}

This get the error message
Arduino: 1.5.6-r2 (Windows 7), Board: "Arduino Mega or Mega 2560, ATmega2560 (Mega 2560)"

Build options changed, rebuilding all

Using library TFT in folder: C:\Program Files (x86)\Arduino\libraries\TFT

Using library SPI in folder: C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\SPI (legacy)

C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-g++ -c -g -Os -w -fno-exceptions -ffunction-sections -fdata-sections -MMD -mmcu=atmega2560 -DF_CPU=16000000L -DARDUINO=156 -DARDUINO_AVR_MEGA2560 -DARDUINO_ARCH_AVR -IC:\Program Files (x86)\Arduino\hardware\arduino\avr\cores\arduino -IC:\Program Files (x86)\Arduino\hardware\arduino\avr\variants\mega -IC:\Program Files (x86)\Arduino\libraries\TFT\src -IC:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\SPI C:\Users\Pete\AppData\Local\Temp\build131039157258798746.tmp\sketch_may13b.cpp -o C:\Users\Pete\AppData\Local\Temp\build131039157258798746.tmp\sketch_may13b.cpp.o

sketch_may13b.ino: In function 'void setup()':
sketch_may13b.ino:74: error: 'pulseCounter' was not declared in this scope
sketch_may13b.ino:79: error: a function-definition is not allowed here before '{' token
sketch_may13b.ino:197: error: expected `}' at end of input

Why do i get ": error: 'pulseCounter' was not declared in this scope" in one but not the other ?

Pesh

Im i missing some thing ?

the other errors in guessing are because i copied a { or a } from the other sketch and i have too many now