Funktion aus cpp file nicht aufrufbar

Hallo wieder mal,

so meine nächste Frage,

ich habe da eine cpp Datei welche eine Funktion enthält:


void MPU6050::getActiveOffsets(int16_t Data[6]) {
  uint8_t AOffsetRegister = (getDeviceID() < 0x38 ) ? MPU6050_RA_XA_OFFS_H : 0x77;
  //  A_OFFSET_H_READ_A_OFFS(Data);
  if (AOffsetRegister == 0x06) I2Cdev::readWords(devAddr, AOffsetRegister, 3, (uint16_t *)Data);
  else {
    I2Cdev::readWords(devAddr, AOffsetRegister, 1, (uint16_t *)Data);
    I2Cdev::readWords(devAddr, AOffsetRegister + 3, 1, (uint16_t *)Data + 1);
    I2Cdev::readWords(devAddr, AOffsetRegister + 6, 1, (uint16_t *)Data + 2);
  }
  //  XG_OFFSET_H_READ_OFFS_USR(Data);
  I2Cdev::readWords(devAddr, 0x13, 3, (uint16_t *)Data + 3);
}

wenn ich diese funktion in meiner ino datei aufrufen will mittels:

#include "MPU6050.h"
MPU6050 mpu;
....
int16_t  actoffset[6]; 
actoffset = mpu.getActiveOffsets();

bekomme ich diese Fehlermeldung:

no matching function for call to 'MPU6050::getActiveOffsets()'

woran kann das liegen?

Danke für eure tolle Hilfe jedesmal!!!!

schönen Abend!

Hier der ganze Code:

#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#include <FS.h>          // this needs to be first, or it all crashes and burns...
#include <WiFiManager.h> // https://github.com/tzapu/WiFiManager
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include "MPU6050.h"
#include <WiFiClient.h>

WiFiUDP Udp;
WiFiManager wifiManager;

IPAddress unicastIP(192, 168, 4, 1);
constexpr uint16_t PORT = 8266;

WiFiClient client;

IPAddress staticIP(192, 168, 4, 4); //Change
IPAddress subnet(255, 255, 255, 0);
IPAddress dns(8, 8, 8, 8);
char ssid[] = "ESPap";           // SSID of your AP
char pass[] = "thereisnospoon";         // password of your AP
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

enum UDP_CLIENT_ID {Hand, UnderArm, UpperArm};

struct UDP_MESSAGE {
  UDP_CLIENT_ID sender;
  Quaternion q;
};

enum UDP_CLIENT_OFFSET {Start};

struct UDP_MESSAGE_OFFSET {
  UDP_CLIENT_OFFSET offset;
};

struct UDP_SEND_OFFSET_DATA {
  float A_off_x;
  float A_off_y;
  float A_off_z;

  float G_off_x;
  float G_off_y;
  float G_off_z;
};

UDP_MESSAGE msg;
UDP_MESSAGE_OFFSET msgoff;
UDP_SEND_OFFSET_DATA msgoffdata;

int start_count = 0;
/*===================================================================== */

// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT


#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
int16_t  actoffset[6];   // Values of active offset

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, '\r', '\n' };

// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void ICACHE_RAM_ATTR dmpDataReady() {
  mpuInterrupt = true;
}

// ================================================================
// ===                      Functions                      ===
// ================================================================
void get_offset_data() {

  actoffset = mpu.getActiveOffsets();
  Serial.println("From Offset Data Function:");
  Serial.println(actoffset);
  //float A_off_x_dat = (float)Data[0], 5);
  //float A_off_y_dat = (float)Data[1], 5);
  //float A_off_z_dat = (float)Data[2], 5);

  //float G_off_x_dat = (float)Data[0], 5);
  //float G_off_y_dat = (float)Data[1], 5);
  //float G_off_z_dat = (float)Data[2], 5);

  //Udp.beginPacket(unicastIP, PORT);
  //UDP_SEND_OFFSET_DATA msgoffdata;
  //float A_off_x = A_off_x_dat;
  //float A_off_y = A_off_y_dat;
  //float A_off_z = A_off_z_dat;
  //float G_off_x = G_off_x_dat;
  //float G_off_y = G_off_y_dat;
  //float G_off_z = G_off_z_dat;
  //Udp.write((uint8_t*)&msgoffdata, sizeof(msgoffdata));
  //Udp.endPacket();
}
// ================================================================
void calibration_dmp() {
  Serial.println(F("Initializing I2C devices..."));
  mpu.initialize();
  pinMode(INTERRUPT_PIN, INPUT);

  // verify connection
  Serial.println(F("Testing device connections..."));
  Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

  // wait for ready
  //Serial.println(F("\nSend any character to begin DMP programming and demo: "));
  //while (Serial.available() && Serial.read()); // empty buffer
  //while (!Serial.available());                 // wait for data
  //while (Serial.available() && Serial.read()); // empty buffer again

  // load and configure the DMP
  Serial.println(F("Initializing DMP..."));
  devStatus = mpu.dmpInitialize();

  // supply your own gyro offsets here, scaled for min sensitivity
  mpu.setXGyroOffset(220);
  mpu.setYGyroOffset(76);
  mpu.setZGyroOffset(-85);
  mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

  // make sure it worked (returns 0 if so)
  if (devStatus == 0) {
    // Calibration Time: generate offsets and calibrate our MPU6050
    mpu.CalibrateAccel(6);
    mpu.CalibrateGyro(6);
    mpu.PrintActiveOffsets();
    // turn on the DMP, now that it's ready
    Serial.println(F("Enabling DMP..."));
    mpu.setDMPEnabled(true);

    // enable Arduino interrupt detection
    Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));
    Serial.print(digitalPinToInterrupt(INTERRUPT_PIN));
    Serial.println(F(")..."));
    attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
    mpuIntStatus = mpu.getIntStatus();

    // set our DMP Ready flag so the main loop() function knows it's okay to use it
    Serial.println(F("DMP ready! Waiting for first interrupt..."));
    dmpReady = true;

    // get expected DMP packet size for later comparison
    packetSize = mpu.dmpGetFIFOPacketSize();
  } else {
    // ERROR!
    // 1 = initial memory load failed
    // 2 = DMP configuration updates failed
    // (if it's going to break, usually the code will be 1)
    Serial.print(F("DMP Initialization failed (code "));
    Serial.print(devStatus);
    Serial.println(F(")"));
  }

  get_offset_data()
}

// ================================================================

void auto_conn_new() {
  wifiManager.setSTAStaticIPConfig(staticIP, subnet, dns);
  //tries to connect to last known settings
  //if it does not connect it starts an access point with the specified name
  //here  "AutoConnectAP" with password "password"
  //and goes into a blocking loop awaiting configuration
  if (!wifiManager.autoConnect("AutoConnectAP", "password")) {
    Serial.println("failed to connect and hit timeout");
    delay(3000);
    // if we still have not connected restart and try all over again
    ESP.restart();
    delay(5000);
  }

  Serial.println();
  Serial.println("Connected");
  Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
  Serial.println("MAC:" + WiFi.macAddress());
  Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
  Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());

}



// ================================================================
int pin = 0;


// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {

  Serial.begin(9600);
  pinMode(D5, OUTPUT);
  pinMode(D7, OUTPUT);
  pinMode(D6, INPUT);
  pinMode(D8, OUTPUT);

  auto_conn_new();

  // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
  Wire.begin();
  Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
  Fastwire::setup(400, true);
#endif

  // initialize serial communication
  // (115200 chosen because it is required for Teapot Demo output, but it's
  // really up to you depending on your project)
  //Serial.begin(115200);
  while (!Serial); // wait for Leonardo enumeration, others continue immediately

  // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3V or Arduino
  // Pro Mini running at 3.3V, cannot handle this baud rate reliably due to
  // the baud timing being too misaligned with processor ticks. You must use
  // 38400 or slower in these cases, or use some kind of external separate
  // crystal solution for the UART timer.

  // initialize device
  calibration_dmp();

  Serial.println("Starting UDP");
  Udp.begin(PORT);
  Serial.printf("Now listening at IP %s, UDP port %d\n", WiFi.softAPIP().toString().c_str(), PORT);
}

// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
  pin = digitalRead(D6);

  if (pin == HIGH) {
    digitalWrite(D8, HIGH);
    digitalWrite(D5, LOW);
    wifiManager.setSTAStaticIPConfig(staticIP, subnet, dns);
    wifiManager.startConfigPortal("AutoConnectAP", "password");
    wifiManager.startWebPortal();
  }
  else if (pin == LOW) {
    // if programming failed, don't try to do anything
    digitalWrite(D8, LOW);
    if (!dmpReady) return;
    int packetSize = Udp.parsePacket();
    if (packetSize) {
      while (Udp.read((uint8_t*)&msgoff, sizeof(msgoff)) == sizeof(msgoff))
      {
        digitalWrite(D5, LOW);
        digitalWrite(D7, HIGH);
        if (msgoff.offset == Start)
        {
          start_count = 1;
          if (start_count == 1) {
            Serial.println("calibration_dmp start");
            calibration_dmp();
          }
          start_count = 0;
          delay(2000);
        }
      }
    }
    else {
      // read a packet from FIFO
      if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the Latest packet
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        Serial.print("quat\t");
        Serial.print(q.w);
        Serial.print("\t");
        Serial.print(q.x);
        Serial.print("\t");
        Serial.print(q.y);
        Serial.print("\t");
        Serial.println(q.z);
        //digitalWrite(D5, HIGH);
#endif

#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetEuler(euler, &q);
        Serial.print("euler\t");
        Serial.print(euler[0] * 180 / M_PI);
        Serial.print("\t");
        Serial.print(euler[1] * 180 / M_PI);
        Serial.print("\t");
        Serial.println(euler[2] * 180 / M_PI);
#endif

#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        Serial.print("ypr\t");
        Serial.print(ypr[0] * 180 / M_PI);
        Serial.print("\t");
        Serial.print(ypr[1] * 180 / M_PI);
        Serial.print("\t");
        Serial.println(ypr[2] * 180 / M_PI);
#endif

#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        Serial.print("areal\t");
        Serial.print(aaReal.x);
        Serial.print("\t");
        Serial.print(aaReal.y);
        Serial.print("\t");
        Serial.println(aaReal.z);
#endif

#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        Serial.print("aworld\t");
        Serial.print(aaWorld.x);
        Serial.print("\t");
        Serial.print(aaWorld.y);
        Serial.print("\t");
        Serial.println(aaWorld.z);
#endif

#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif

        digitalWrite(D5, HIGH);
        digitalWrite(D7, LOW);
        Udp.beginPacket(unicastIP, PORT);
        UDP_MESSAGE msg;
        msg.sender = UpperArm; //Change
        msg.q = q;
        Udp.write((uint8_t*)&msg, sizeof(msg));
        Udp.endPacket();
      }
    }
  }
}

Schau dir die erste Zeile der Funktion (die "Signatur") mal an: was steht da in den Klammern? Und was steht in Deinen Klammern beim Aufruf? :wink:

Ok danke, bedeutet er will einen Übergabeparameter haben.

dann muss ich mir die funktion nochmal anschaun, dachte ich bekomme meine Offsetdaten zurück, da die Funktion ja getActiveOffset heißt.
Aber anscheinend ja nicht oder?

mfg

Der Rückgabewert der Funktion ist void - sie gibt also keinen Wert zurück, der zugewiesen werden kann.

Wonach sieht denn das Aufrufargument aus - kommt dir Typ und Größe bekannt vor?

falls du das int16_t Data[6] meints und ich deine frage richtig verstanden habe, dann meinst du das er mir die Werte dort reinspeichert, da es genai integer sind und 6 Werte die ich auch haben will bzw mir erwarten würde als Rückgabe??

danke
mfg

Yessir, so ungefähr.

Man kann in C und C++ keine kompletten Arrays an Funktionen übergeben, sondern es wird dabei nur die Adresse übergeben. Und die Funktion nutzt diese Adresse dann, um Werte direkt in das Array zu schreiben.

Eh' jetzt die Experten losschreien müssen: ich weiß natürlich, dass das nicht die ganze Geschichte ist, aber die nützt dem TO momentan wohl nix! :wink:

Danke für deine Hilfe soweit!!!

VLt noch eine kurze Frage, wenn ich dann das

int16_t actoffset[6]

per UDP senden will, hättest du einen Tipp wie ich das am besten mache?

Aber ur falls du zeit und lust hast!!!!

Jetzt mal nicht das ganze hier auch noch!

hab ja eh im anderen post schon eine Antwort gegeben!

Schönen Abend!

Du solltest Deine gleichen Probleme nicht auf mehrere Threads verteilen. Sonst könnte die Hilfsbereitschaft extrem sinken.

Gruß Tommy