Hallo wieder mal,
so meine nächste Frage,
ich habe da eine cpp Datei welche eine Funktion enthält:
void MPU6050::getActiveOffsets(int16_t Data[6]) {
uint8_t AOffsetRegister = (getDeviceID() < 0x38 ) ? MPU6050_RA_XA_OFFS_H : 0x77;
// A_OFFSET_H_READ_A_OFFS(Data);
if (AOffsetRegister == 0x06) I2Cdev::readWords(devAddr, AOffsetRegister, 3, (uint16_t *)Data);
else {
I2Cdev::readWords(devAddr, AOffsetRegister, 1, (uint16_t *)Data);
I2Cdev::readWords(devAddr, AOffsetRegister + 3, 1, (uint16_t *)Data + 1);
I2Cdev::readWords(devAddr, AOffsetRegister + 6, 1, (uint16_t *)Data + 2);
}
// XG_OFFSET_H_READ_OFFS_USR(Data);
I2Cdev::readWords(devAddr, 0x13, 3, (uint16_t *)Data + 3);
}
wenn ich diese funktion in meiner ino datei aufrufen will mittels:
#include "MPU6050.h"
MPU6050 mpu;
....
int16_t actoffset[6];
actoffset = mpu.getActiveOffsets();
bekomme ich diese Fehlermeldung:
no matching function for call to 'MPU6050::getActiveOffsets()'
woran kann das liegen?
Danke für eure tolle Hilfe jedesmal!!!!
schönen Abend!
Hier der ganze Code:
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#include <FS.h> // this needs to be first, or it all crashes and burns...
#include <WiFiManager.h> // https://github.com/tzapu/WiFiManager
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include "MPU6050.h"
#include <WiFiClient.h>
WiFiUDP Udp;
WiFiManager wifiManager;
IPAddress unicastIP(192, 168, 4, 1);
constexpr uint16_t PORT = 8266;
WiFiClient client;
IPAddress staticIP(192, 168, 4, 4); //Change
IPAddress subnet(255, 255, 255, 0);
IPAddress dns(8, 8, 8, 8);
char ssid[] = "ESPap"; // SSID of your AP
char pass[] = "thereisnospoon"; // password of your AP
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high
enum UDP_CLIENT_ID {Hand, UnderArm, UpperArm};
struct UDP_MESSAGE {
UDP_CLIENT_ID sender;
Quaternion q;
};
enum UDP_CLIENT_OFFSET {Start};
struct UDP_MESSAGE_OFFSET {
UDP_CLIENT_OFFSET offset;
};
struct UDP_SEND_OFFSET_DATA {
float A_off_x;
float A_off_y;
float A_off_z;
float G_off_x;
float G_off_y;
float G_off_z;
};
UDP_MESSAGE msg;
UDP_MESSAGE_OFFSET msgoff;
UDP_SEND_OFFSET_DATA msgoffdata;
int start_count = 0;
/*===================================================================== */
// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
#define OUTPUT_READABLE_QUATERNION
// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER
// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_YAWPITCHROLL
// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL
// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL
// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT
#define INTERRUPT_PIN 2 // use pin 2 on Arduino Uno & most boards
// MPU control/status vars
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
int16_t actoffset[6]; // Values of active offset
// orientation/motion vars
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, '\r', '\n' };
// ================================================================
// === INTERRUPT DETECTION ROUTINE ===
// ================================================================
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void ICACHE_RAM_ATTR dmpDataReady() {
mpuInterrupt = true;
}
// ================================================================
// === Functions ===
// ================================================================
void get_offset_data() {
actoffset = mpu.getActiveOffsets();
Serial.println("From Offset Data Function:");
Serial.println(actoffset);
//float A_off_x_dat = (float)Data[0], 5);
//float A_off_y_dat = (float)Data[1], 5);
//float A_off_z_dat = (float)Data[2], 5);
//float G_off_x_dat = (float)Data[0], 5);
//float G_off_y_dat = (float)Data[1], 5);
//float G_off_z_dat = (float)Data[2], 5);
//Udp.beginPacket(unicastIP, PORT);
//UDP_SEND_OFFSET_DATA msgoffdata;
//float A_off_x = A_off_x_dat;
//float A_off_y = A_off_y_dat;
//float A_off_z = A_off_z_dat;
//float G_off_x = G_off_x_dat;
//float G_off_y = G_off_y_dat;
//float G_off_z = G_off_z_dat;
//Udp.write((uint8_t*)&msgoffdata, sizeof(msgoffdata));
//Udp.endPacket();
}
// ================================================================
void calibration_dmp() {
Serial.println(F("Initializing I2C devices..."));
mpu.initialize();
pinMode(INTERRUPT_PIN, INPUT);
// verify connection
Serial.println(F("Testing device connections..."));
Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
// wait for ready
//Serial.println(F("\nSend any character to begin DMP programming and demo: "));
//while (Serial.available() && Serial.read()); // empty buffer
//while (!Serial.available()); // wait for data
//while (Serial.available() && Serial.read()); // empty buffer again
// load and configure the DMP
Serial.println(F("Initializing DMP..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// Calibration Time: generate offsets and calibrate our MPU6050
mpu.CalibrateAccel(6);
mpu.CalibrateGyro(6);
mpu.PrintActiveOffsets();
// turn on the DMP, now that it's ready
Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));
Serial.print(digitalPinToInterrupt(INTERRUPT_PIN));
Serial.println(F(")..."));
attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the code will be 1)
Serial.print(F("DMP Initialization failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}
get_offset_data()
}
// ================================================================
void auto_conn_new() {
wifiManager.setSTAStaticIPConfig(staticIP, subnet, dns);
//tries to connect to last known settings
//if it does not connect it starts an access point with the specified name
//here "AutoConnectAP" with password "password"
//and goes into a blocking loop awaiting configuration
if (!wifiManager.autoConnect("AutoConnectAP", "password")) {
Serial.println("failed to connect and hit timeout");
delay(3000);
// if we still have not connected restart and try all over again
ESP.restart();
delay(5000);
}
Serial.println();
Serial.println("Connected");
Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
Serial.println("MAC:" + WiFi.macAddress());
Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());
}
// ================================================================
int pin = 0;
// ================================================================
// === INITIAL SETUP ===
// ================================================================
void setup() {
Serial.begin(9600);
pinMode(D5, OUTPUT);
pinMode(D7, OUTPUT);
pinMode(D6, INPUT);
pinMode(D8, OUTPUT);
auto_conn_new();
// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
// initialize serial communication
// (115200 chosen because it is required for Teapot Demo output, but it's
// really up to you depending on your project)
//Serial.begin(115200);
while (!Serial); // wait for Leonardo enumeration, others continue immediately
// NOTE: 8MHz or slower host processors, like the Teensy @ 3.3V or Arduino
// Pro Mini running at 3.3V, cannot handle this baud rate reliably due to
// the baud timing being too misaligned with processor ticks. You must use
// 38400 or slower in these cases, or use some kind of external separate
// crystal solution for the UART timer.
// initialize device
calibration_dmp();
Serial.println("Starting UDP");
Udp.begin(PORT);
Serial.printf("Now listening at IP %s, UDP port %d\n", WiFi.softAPIP().toString().c_str(), PORT);
}
// ================================================================
// === MAIN PROGRAM LOOP ===
// ================================================================
void loop() {
pin = digitalRead(D6);
if (pin == HIGH) {
digitalWrite(D8, HIGH);
digitalWrite(D5, LOW);
wifiManager.setSTAStaticIPConfig(staticIP, subnet, dns);
wifiManager.startConfigPortal("AutoConnectAP", "password");
wifiManager.startWebPortal();
}
else if (pin == LOW) {
// if programming failed, don't try to do anything
digitalWrite(D8, LOW);
if (!dmpReady) return;
int packetSize = Udp.parsePacket();
if (packetSize) {
while (Udp.read((uint8_t*)&msgoff, sizeof(msgoff)) == sizeof(msgoff))
{
digitalWrite(D5, LOW);
digitalWrite(D7, HIGH);
if (msgoff.offset == Start)
{
start_count = 1;
if (start_count == 1) {
Serial.println("calibration_dmp start");
calibration_dmp();
}
start_count = 0;
delay(2000);
}
}
}
else {
// read a packet from FIFO
if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the Latest packet
#ifdef OUTPUT_READABLE_QUATERNION
// display quaternion values in easy matrix form: w x y z
mpu.dmpGetQuaternion(&q, fifoBuffer);
Serial.print("quat\t");
Serial.print(q.w);
Serial.print("\t");
Serial.print(q.x);
Serial.print("\t");
Serial.print(q.y);
Serial.print("\t");
Serial.println(q.z);
//digitalWrite(D5, HIGH);
#endif
#ifdef OUTPUT_READABLE_EULER
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetEuler(euler, &q);
Serial.print("euler\t");
Serial.print(euler[0] * 180 / M_PI);
Serial.print("\t");
Serial.print(euler[1] * 180 / M_PI);
Serial.print("\t");
Serial.println(euler[2] * 180 / M_PI);
#endif
#ifdef OUTPUT_READABLE_YAWPITCHROLL
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
Serial.print("ypr\t");
Serial.print(ypr[0] * 180 / M_PI);
Serial.print("\t");
Serial.print(ypr[1] * 180 / M_PI);
Serial.print("\t");
Serial.println(ypr[2] * 180 / M_PI);
#endif
#ifdef OUTPUT_READABLE_REALACCEL
// display real acceleration, adjusted to remove gravity
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetAccel(&aa, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
Serial.print("areal\t");
Serial.print(aaReal.x);
Serial.print("\t");
Serial.print(aaReal.y);
Serial.print("\t");
Serial.println(aaReal.z);
#endif
#ifdef OUTPUT_READABLE_WORLDACCEL
// display initial world-frame acceleration, adjusted to remove gravity
// and rotated based on known orientation from quaternion
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetAccel(&aa, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
Serial.print("aworld\t");
Serial.print(aaWorld.x);
Serial.print("\t");
Serial.print(aaWorld.y);
Serial.print("\t");
Serial.println(aaWorld.z);
#endif
#ifdef OUTPUT_TEAPOT
// display quaternion values in InvenSense Teapot demo format:
teapotPacket[2] = fifoBuffer[0];
teapotPacket[3] = fifoBuffer[1];
teapotPacket[4] = fifoBuffer[4];
teapotPacket[5] = fifoBuffer[5];
teapotPacket[6] = fifoBuffer[8];
teapotPacket[7] = fifoBuffer[9];
teapotPacket[8] = fifoBuffer[12];
teapotPacket[9] = fifoBuffer[13];
Serial.write(teapotPacket, 14);
teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
digitalWrite(D5, HIGH);
digitalWrite(D7, LOW);
Udp.beginPacket(unicastIP, PORT);
UDP_MESSAGE msg;
msg.sender = UpperArm; //Change
msg.q = q;
Udp.write((uint8_t*)&msg, sizeof(msg));
Udp.endPacket();
}
}
}
}