...And the other half:
void mainMenu() {
Serial.print("Press toggle to switch options");
delay(2000);
clearLCD();
Serial.print("Press select to select an option");
delay(2000);
clearLCD();
Serial.print("Light-Stopper");
option1();
}
void option1() {
pinMode(irPin, INPUT);
delay(100);
irval = digitalRead(irPin);
btnval = digitalRead(btnPin);
if(irval == 0 && btnval == 0) {
clearLCD();
Serial.print("??");
}
else if(irval == 0 && btnval == 1) {
clearLCD();
Serial.print("Light-Stopper");
lightStopper();
}
else if(irval == 1 && btnval == 0) {
clearLCD();
Serial.print("Simon");
option2();
}
else if(irval == 1 && btnval == 1) {
option1();
}
}
void option2() {
pinMode(irPin, INPUT);
delay(100);
irval = digitalRead(irPin);
btnval = digitalRead(btnPin);
if(irval == 0 && btnval == 0) {
Serial.print("??");
}
else if(irval == 0 && btnval == 1) {
clearLCD();
Serial.print("Simon");
Simon();
}
else if(irval == 1 && btnval == 0) {
clearLCD();
Serial.print("Light-Stopper");
option1();
}
else if(irval == 1 && btnval == 1) {
option2();
}
}
void Simon() {
Serial.print("Under Construction!");
delay(1000);
Simon();
}
void lightStopper() {
// light each pin one by one using a function A
for (int j = 8; j > 0; j--) {
lightShiftPinA(j);
delay(20);
}
// light each pin one by one using a function A
for (int j = 0; j < 8; j++) {
lightShiftPinB(j);
delay(20);
}
lightStopper();
}
void lightShiftPinA(int p) {
//defines a local variable
int pin;
//this is line uses a bitwise operator
//shifting a bit left using << is the same
//as multiplying the decimal number by two.
pin = 1<< p;
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//move 'em out
shiftOut(dataPin, clockPin, pin);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
}
//This function uses that fact that each bit in a byte
//is 2 times greater than the one before it to
//shift the bits higher
void lightShiftPinB(int p) {
//defines a local variable
int pin;
//start with the pin = 1 so that if 0 is passed to this
//function pin 0 will light.
pin = 1;
for (int x = 0; x < p; x++) {
pin = pin * 2;
}
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, 0);
//move 'em out
shiftOut(dataPin, clockPin, pin);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, 1);
}
void shiftOut(int myDataPin, int myClockPin, byte myDataOut) {
// This shifts 8 bits out MSB first,
//on the rising edge of the clock,
//clock idles low
//internal function setup
int i=0;
int pinState;
pinMode(myClockPin, OUTPUT);
pinMode(myDataPin, OUTPUT);
//clear everything out just in case to
//prepare shift register for bit shifting
digitalWrite(myDataPin, 0);
digitalWrite(myClockPin, 0);
//for each bit in the byte myDataOut?
//NOTICE THAT WE ARE COUNTING DOWN in our for loop
//This means that %00000001 or "1" will go through such
//that it will be pin Q0 that lights.
for (i=7; i>=0; i--) {
digitalWrite(myClockPin, 0);
//if the value passed to myDataOut and a bitmask result
// true then... so if we are at i=6 and our value is
// %11010100 it would the code compares it to %01000000
// and proceeds to set pinState to 1.
if ( myDataOut & (1<<i) ) {
pinState= 1;
}
else {
pinState= 0;
}
//Sets the pin to HIGH or LOW depending on pinState
digitalWrite(myDataPin, pinState);
//register shifts bits on upstroke of clock pin
digitalWrite(myClockPin, 1);
//zero the data pin after shift to prevent bleed through
digitalWrite(myDataPin, 0);
}
//stop shifting
digitalWrite(myClockPin, 0);
}