@PaulRB @lastchancename Please take a look at the schematic diagram and the code below.
LoRa.h:
#ifndef LORA_H
#define LORA_H
#include <Arduino.h>
// tiny85 SPI pins
#define spiSCK PB2
#define spiDO PB1
#define spiDI PB0
#define ssPIN PB4
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
class LoRaClass : public Stream
{
public:
LoRaClass();
int begin(long frequency);
static void beginTinySPI();
void end();
static uint8_t sendSPItiny85(uint8_t spiData); // transferr with ATtiny85 SPI
int beginPacket(int implicitHeader = false);
int endPacket(bool async = false);
int parsePacket(int size = 0);
int packetRssi();
float packetSnr();
long packetFrequencyError();
int rssi();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
#ifndef ARDUINO_SAMD_MKRWAN1300
void onReceive(void (*callback)(int));
void onTxDone(void (*callback)());
void receive(int size = 0);
#endif
void idle();
void sleep();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
void setFrequency(long frequency);
void setSpreadingFactor(int sf);
void setSignalBandwidth(long sbw);
void setCodingRate4(int denominator);
void setPreambleLength(long length);
void setSyncWord(int sw);
void enableCrc();
void disableCrc();
void enableInvertIQ();
void disableInvertIQ();
void setOCP(uint8_t mA); // Over Current Protection control
void setGain(uint8_t gain); // Set LNA gain
// deprecated
void crc() { enableCrc(); }
void noCrc() { disableCrc(); }
byte random();
void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream &out);
private:
void explicitHeaderMode();
void implicitHeaderMode();
void handleDio0Rise();
bool isTransmitting();
int getSpreadingFactor();
long getSignalBandwidth();
void setLdoFlag();
uint8_t readRegister(uint8_t address);
void writeRegister(uint8_t address, uint8_t value);
uint8_t singleTransfer(uint8_t address, uint8_t value);
static void onDio0Rise();
private:
int _packetIndex;
int _implicitHeaderMode;
long _frequency;
void (*_onReceive)(int);
void (*_onTxDone)();
};
extern LoRaClass LoRa;
#endif
LoRa.cpp:
#include "LoRa.h"
// registers
#define REG_FIFO 0x00
#define REG_OP_MODE 0x01
#define REG_FRF_MSB 0x06
#define REG_FRF_MID 0x07
#define REG_FRF_LSB 0x08
#define REG_PA_CONFIG 0x09
#define REG_OCP 0x0b
#define REG_LNA 0x0c
#define REG_FIFO_ADDR_PTR 0x0d
#define REG_FIFO_TX_BASE_ADDR 0x0e
#define REG_FIFO_RX_BASE_ADDR 0x0f
#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS 0x12
#define REG_RX_NB_BYTES 0x13
#define REG_PKT_SNR_VALUE 0x19
#define REG_PKT_RSSI_VALUE 0x1a
#define REG_RSSI_VALUE 0x1b
#define REG_MODEM_CONFIG_1 0x1d
#define REG_MODEM_CONFIG_2 0x1e
#define REG_PREAMBLE_MSB 0x20
#define REG_PREAMBLE_LSB 0x21
#define REG_PAYLOAD_LENGTH 0x22
#define REG_MODEM_CONFIG_3 0x26
#define REG_FREQ_ERROR_MSB 0x28
#define REG_FREQ_ERROR_MID 0x29
#define REG_FREQ_ERROR_LSB 0x2a
#define REG_RSSI_WIDEBAND 0x2c
#define REG_DETECTION_OPTIMIZE 0x31
#define REG_INVERTIQ 0x33
#define REG_DETECTION_THRESHOLD 0x37
#define REG_SYNC_WORD 0x39
#define REG_INVERTIQ2 0x3b
#define REG_DIO_MAPPING_1 0x40
#define REG_VERSION 0x42
#define REG_PA_DAC 0x4d
// modes
#define MODE_LONG_RANGE_MODE 0x80
#define MODE_SLEEP 0x00
#define MODE_STDBY 0x01
#define MODE_TX 0x03
#define MODE_RX_CONTINUOUS 0x05
#define MODE_RX_SINGLE 0x06
// PA config
#define PA_BOOST 0x80
// IRQ masks
#define IRQ_TX_DONE_MASK 0x08
#define IRQ_PAYLOAD_CRC_ERROR_MASK 0x20
#define IRQ_RX_DONE_MASK 0x40
#define RF_MID_BAND_THRESHOLD 525E6
#define RSSI_OFFSET_HF_PORT 157
#define RSSI_OFFSET_LF_PORT 164
#define MAX_PKT_LENGTH 255
#define ISR_PREFIX
LoRaClass::LoRaClass() :
_packetIndex(0),
_implicitHeaderMode(0),
_frequency(0),
_onReceive(NULL),
_onTxDone(NULL) { }
int LoRaClass::begin(long frequency)
{
beginTinySPI();
// check version
uint8_t version = readRegister(REG_VERSION);
if (version != 0x12) {
return 0;
}
// put in sleep mode
sleep();
// set frequency
setFrequency(frequency);
// set base addresses
writeRegister(REG_FIFO_TX_BASE_ADDR, 0);
writeRegister(REG_FIFO_RX_BASE_ADDR, 0);
// set LNA boost
writeRegister(REG_LNA, readRegister(REG_LNA) | 0x03);
// set auto AGC
writeRegister(REG_MODEM_CONFIG_3, 0x04);
// set output power to 17 dBm
setTxPower(17);
// put in standby mode
idle();
return 1;
}
static uint8_t LoRaClass::sendSPItiny85(uint8_t spiData)
{
USIDR = spiData; // Load data into SPI data register
USISR = (1 << USIOIF); // clear SPI counter overflow flag
while (((1 << USIOIF) & USISR) == 0 ) // transfer until the overflow bit is set
{
USICR = (1 << USIWM0) | (1 << USICS1) | (1 << USITC) | (1 << USICLK); // Put tiny85 into SPI mode | external clock source , count on positive edge | toggle clock generator bit
}
return USIDR; // retrieve data from Slave at end of 1 byte transfere
}
void LoRaClass::beginTinySPI(){
DDRB |= (1 << spiSCK); // set SCK as output - SPI Clock
DDRB |= (1 << spiDO); // set DO as output - SPI data out
DDRB &= ~(1 << spiDI); // set DI as input - SPI Data in
DDRB |= (1 << ssPIN); // slave select as output
}
void LoRaClass::end()
{
// put in sleep mode
sleep();
}
int LoRaClass::beginPacket(int implicitHeader)
{
if (isTransmitting()) {
return 0;
}
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
// reset FIFO address and paload length
writeRegister(REG_FIFO_ADDR_PTR, 0);
writeRegister(REG_PAYLOAD_LENGTH, 0);
return 1;
}
int LoRaClass::endPacket(bool async)
{
if ((async) && (_onTxDone))
writeRegister(REG_DIO_MAPPING_1, 0x40); // DIO0 => TXDONE
// put in TX mode
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_TX);
if (!async) {
// wait for TX done
while ((readRegister(REG_IRQ_FLAGS) & IRQ_TX_DONE_MASK) == 0) {
yield();
}
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, IRQ_TX_DONE_MASK);
}
return 1;
}
bool LoRaClass::isTransmitting()
{
if ((readRegister(REG_OP_MODE) & MODE_TX) == MODE_TX) {
return true;
}
if (readRegister(REG_IRQ_FLAGS) & IRQ_TX_DONE_MASK) {
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, IRQ_TX_DONE_MASK);
}
return false;
}
int LoRaClass::parsePacket(int size)
{
int packetLength = 0;
int irqFlags = readRegister(REG_IRQ_FLAGS);
if (size > 0) {
implicitHeaderMode();
writeRegister(REG_PAYLOAD_LENGTH, size & 0xff);
} else {
explicitHeaderMode();
}
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, irqFlags);
if ((irqFlags & IRQ_RX_DONE_MASK) && (irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
if (_implicitHeaderMode) {
packetLength = readRegister(REG_PAYLOAD_LENGTH);
} else {
packetLength = readRegister(REG_RX_NB_BYTES);
}
// set FIFO address to current RX address
writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));
// put in standby mode
idle();
} else if (readRegister(REG_OP_MODE) != (MODE_LONG_RANGE_MODE | MODE_RX_SINGLE)) {
// not currently in RX mode
// reset FIFO address
writeRegister(REG_FIFO_ADDR_PTR, 0);
// put in single RX mode
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_SINGLE);
}
return packetLength;
}
int LoRaClass::packetRssi()
{
return (readRegister(REG_PKT_RSSI_VALUE) - (_frequency < RF_MID_BAND_THRESHOLD ? RSSI_OFFSET_LF_PORT : RSSI_OFFSET_HF_PORT));
}
float LoRaClass::packetSnr()
{
return ((int8_t)readRegister(REG_PKT_SNR_VALUE)) * 0.25;
}
long LoRaClass::packetFrequencyError()
{
int32_t freqError = 0;
freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB) & B111);
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID));
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB));
if (readRegister(REG_FREQ_ERROR_MSB) & B1000) { // Sign bit is on
freqError -= 524288; // B1000'0000'0000'0000'0000
}
const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f); // p. 37
return static_cast<long>(fError);
}
int LoRaClass::rssi()
{
return (readRegister(REG_RSSI_VALUE) - (_frequency < RF_MID_BAND_THRESHOLD ? RSSI_OFFSET_LF_PORT : RSSI_OFFSET_HF_PORT));
}
size_t LoRaClass::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t LoRaClass::write(const uint8_t *buffer, size_t size)
{
int currentLength = readRegister(REG_PAYLOAD_LENGTH);
// check size
if ((currentLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - currentLength;
}
// write data
for (size_t i = 0; i < size; i++) {
writeRegister(REG_FIFO, buffer[i]);
}
// update length
writeRegister(REG_PAYLOAD_LENGTH, currentLength + size);
return size;
}
int LoRaClass::available()
{
return (readRegister(REG_RX_NB_BYTES) - _packetIndex);
}
int LoRaClass::read()
{
if (!available()) {
return -1;
}
_packetIndex++;
return readRegister(REG_FIFO);
}
int LoRaClass::peek()
{
if (!available()) {
return -1;
}
// store current FIFO address
int currentAddress = readRegister(REG_FIFO_ADDR_PTR);
// read
uint8_t b = readRegister(REG_FIFO);
// restore FIFO address
writeRegister(REG_FIFO_ADDR_PTR, currentAddress);
return b;
}
void LoRaClass::flush()
{
}
void LoRaClass::idle()
{
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STDBY);
}
void LoRaClass::sleep()
{
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP);
}
void LoRaClass::setTxPower(int level, int outputPin)
{
if (PA_OUTPUT_RFO_PIN == outputPin) {
// RFO
if (level < 0) {
level = 0;
} else if (level > 14) {
level = 14;
}
writeRegister(REG_PA_CONFIG, 0x70 | level);
} else {
// PA BOOST
if (level > 17) {
if (level > 20) {
level = 20;
}
// subtract 3 from level, so 18 - 20 maps to 15 - 17
level -= 3;
// High Power +20 dBm Operation (Semtech SX1276/77/78/79 5.4.3.)
writeRegister(REG_PA_DAC, 0x87);
setOCP(140);
} else {
if (level < 2) {
level = 2;
}
//Default value PA_HF/LF or +17dBm
writeRegister(REG_PA_DAC, 0x84);
setOCP(100);
}
writeRegister(REG_PA_CONFIG, PA_BOOST | (level - 2));
}
}
void LoRaClass::setFrequency(long frequency)
{
_frequency = frequency;
uint64_t frf = ((uint64_t)frequency << 19) / 32000000;
writeRegister(REG_FRF_MSB, (uint8_t)(frf >> 16));
writeRegister(REG_FRF_MID, (uint8_t)(frf >> 8));
writeRegister(REG_FRF_LSB, (uint8_t)(frf >> 0));
}
int LoRaClass::getSpreadingFactor()
{
return readRegister(REG_MODEM_CONFIG_2) >> 4;
}
void LoRaClass::setSpreadingFactor(int sf)
{
if (sf < 6) {
sf = 6;
} else if (sf > 12) {
sf = 12;
}
if (sf == 6) {
writeRegister(REG_DETECTION_OPTIMIZE, 0xc5);
writeRegister(REG_DETECTION_THRESHOLD, 0x0c);
} else {
writeRegister(REG_DETECTION_OPTIMIZE, 0xc3);
writeRegister(REG_DETECTION_THRESHOLD, 0x0a);
}
writeRegister(REG_MODEM_CONFIG_2, (readRegister(REG_MODEM_CONFIG_2) & 0x0f) | ((sf << 4) & 0xf0));
setLdoFlag();
}
long LoRaClass::getSignalBandwidth()
{
byte bw = (readRegister(REG_MODEM_CONFIG_1) >> 4);
switch (bw) {
case 0: return 7.8E3;
case 1: return 10.4E3;
case 2: return 15.6E3;
case 3: return 20.8E3;
case 4: return 31.25E3;
case 5: return 41.7E3;
case 6: return 62.5E3;
case 7: return 125E3;
case 8: return 250E3;
case 9: return 500E3;
}
return -1;
}
void LoRaClass::setSignalBandwidth(long sbw)
{
int bw;
if (sbw <= 7.8E3) {
bw = 0;
} else if (sbw <= 10.4E3) {
bw = 1;
} else if (sbw <= 15.6E3) {
bw = 2;
} else if (sbw <= 20.8E3) {
bw = 3;
} else if (sbw <= 31.25E3) {
bw = 4;
} else if (sbw <= 41.7E3) {
bw = 5;
} else if (sbw <= 62.5E3) {
bw = 6;
} else if (sbw <= 125E3) {
bw = 7;
} else if (sbw <= 250E3) {
bw = 8;
} else /*if (sbw <= 250E3)*/ {
bw = 9;
}
writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0x0f) | (bw << 4));
setLdoFlag();
}
void LoRaClass::setLdoFlag()
{
// Section 4.1.1.5
long symbolDuration = 1000 / ( getSignalBandwidth() / (1L << getSpreadingFactor()) ) ;
// Section 4.1.1.6
boolean ldoOn = symbolDuration > 16;
uint8_t config3 = readRegister(REG_MODEM_CONFIG_3);
bitWrite(config3, 3, ldoOn);
writeRegister(REG_MODEM_CONFIG_3, config3);
}
void LoRaClass::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0xf1) | (cr << 1));
}
void LoRaClass::setPreambleLength(long length)
{
writeRegister(REG_PREAMBLE_MSB, (uint8_t)(length >> 8));
writeRegister(REG_PREAMBLE_LSB, (uint8_t)(length >> 0));
}
void LoRaClass::setSyncWord(int sw)
{
writeRegister(REG_SYNC_WORD, sw);
}
void LoRaClass::enableCrc()
{
writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) | 0x04);
}
void LoRaClass::disableCrc()
{
writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) & 0xfb);
}
void LoRaClass::enableInvertIQ()
{
writeRegister(REG_INVERTIQ, 0x66);
writeRegister(REG_INVERTIQ2, 0x19);
}
void LoRaClass::disableInvertIQ()
{
writeRegister(REG_INVERTIQ, 0x27);
writeRegister(REG_INVERTIQ2, 0x1d);
}
void LoRaClass::setOCP(uint8_t mA)
{
uint8_t ocpTrim = 27;
if (mA <= 120) {
ocpTrim = (mA - 45) / 5;
} else if (mA <=240) {
ocpTrim = (mA + 30) / 10;
}
writeRegister(REG_OCP, 0x20 | (0x1F & ocpTrim));
}
void LoRaClass::setGain(uint8_t gain)
{
// check allowed range
if (gain > 6) {
gain = 6;
}
// set to standby
idle();
// set gain
if (gain == 0) {
// if gain = 0, enable AGC
writeRegister(REG_MODEM_CONFIG_3, 0x04);
} else {
// disable AGC
writeRegister(REG_MODEM_CONFIG_3, 0x00);
// clear Gain and set LNA boost
writeRegister(REG_LNA, 0x03);
// set gain
writeRegister(REG_LNA, readRegister(REG_LNA) | (gain << 5));
}
}
byte LoRaClass::random()
{
return readRegister(REG_RSSI_WIDEBAND);
}
void LoRaClass::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void LoRaClass::explicitHeaderMode()
{
_implicitHeaderMode = 0;
writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) & 0xfe);
}
void LoRaClass::implicitHeaderMode()
{
_implicitHeaderMode = 1;
writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) | 0x01);
}
void LoRaClass::handleDio0Rise()
{
int irqFlags = readRegister(REG_IRQ_FLAGS);
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, irqFlags);
if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
if ((irqFlags & IRQ_RX_DONE_MASK) != 0) {
// received a packet
_packetIndex = 0;
// read packet length
int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH) : readRegister(REG_RX_NB_BYTES);
// set FIFO address to current RX address
writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));
if (_onReceive) {
_onReceive(packetLength);
}
}
else if ((irqFlags & IRQ_TX_DONE_MASK) != 0) {
if (_onTxDone) {
_onTxDone();
}
}
}
}
uint8_t LoRaClass::readRegister(uint8_t address)
{
return singleTransfer(address & 0x7f, 0x00);
}
void LoRaClass::writeRegister(uint8_t address, uint8_t value)
{
singleTransfer(address | 0x80, value);
}
uint8_t LoRaClass::singleTransfer(uint8_t address, uint8_t value)
{
uint8_t response;
PORTB &= ~(1<<ssPIN); // Pull ss Low
sendSPItiny85(address); // address to read/write to slave
response = sendSPItiny85(value); // retrieve byte fro slave
PORTB |= (1<< ssPIN); // pull ss high again
return response;
}
ISR_PREFIX void LoRaClass::onDio0Rise()
{
LoRa.handleDio0Rise();
}
LoRaClass LoRa;
main.ino:
#include "LoRa.h"
int counter = 0;
void setup() {
// Start loRa
if (!LoRa.begin(915E6)) {
while (1);
}
}
void loop() {
// send LoRa packet every 1s
LoRa.beginPacket();
LoRa.print("- hello from tiny85 - ");
LoRa.print("Packect # ");
LoRa.print(counter);
LoRa.endPacket();
delay(1000);
counter++;
}
The LoRa code is based on: GitHub - sandeepmistry/arduino-LoRa: An Arduino library for sending and receiving data using LoRa radios.