HMC5883L compass not working

My project involves the component HMC5883L, which is a magnetometer and should therefor act like a compass. But it is not working like it should. The code I've downloaded is directly from Wiring and Test | Adafruit HMC5883L Breakout - Triple-Axis Magnetometer Compass Sensor | Adafruit Learning System . When I start the output ranges from 160 to 220. It doesn't matter it points to north/south, but it needs to be consistent and show degrees from 0 to 360.
The code:

/***************************************************************************
  This is a library example for the HMC5883 magnentometer/compass

  Designed specifically to work with the Adafruit HMC5883 Breakout
  http://www.adafruit.com/products/1746
 
  *** You will also need to install the Adafruit_Sensor library! ***

  These displays use I2C to communicate, 2 pins are required to interface.

  Adafruit invests time and resources providing this open source code,
  please support Adafruit andopen-source hardware by purchasing products
  from Adafruit!

  Written by Kevin Townsend for Adafruit Industries with some heading example from
  Love Electronics (loveelectronics.co.uk)
 
 This program is free software: you can redistribute it and/or modify
 it under the terms of the version 3 GNU General Public License as
 published by the Free Software Foundation.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.

 ***************************************************************************/

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_HMC5883_U.h>

/* Assign a unique ID to this sensor at the same time */
Adafruit_HMC5883_Unified mag = Adafruit_HMC5883_Unified(12345);

void displaySensorDetails(void)
{
  sensor_t sensor;
  mag.getSensor(&sensor);
  Serial.println("------------------------------------");
  Serial.print  ("Sensor:       "); Serial.println(sensor.name);
  Serial.print  ("Driver Ver:   "); Serial.println(sensor.version);
  Serial.print  ("Unique ID:    "); Serial.println(sensor.sensor_id);
  Serial.print  ("Max Value:    "); Serial.print(sensor.max_value); Serial.println(" uT");
  Serial.print  ("Min Value:    "); Serial.print(sensor.min_value); Serial.println(" uT");
  Serial.print  ("Resolution:   "); Serial.print(sensor.resolution); Serial.println(" uT");  
  Serial.println("------------------------------------");
  Serial.println("");
  delay(500);
}

void setup(void) 
{
  Serial.begin(9600);
  Serial.println("HMC5883 Magnetometer Test"); Serial.println("");
  
  /* Initialise the sensor */
  if(!mag.begin())
  {
    /* There was a problem detecting the HMC5883 ... check your connections */
    Serial.println("Ooops, no HMC5883 detected ... Check your wiring!");
    while(1);
  }
  
  /* Display some basic information on this sensor */
  displaySensorDetails();
}

void loop(void) 
{
  /* Get a new sensor event */ 
  sensors_event_t event; 
  mag.getEvent(&event);
 
  /* Display the results (magnetic vector values are in micro-Tesla (uT)) */
  Serial.print("X: "); Serial.print(event.magnetic.x); Serial.print("  ");
  Serial.print("Y: "); Serial.print(event.magnetic.y); Serial.print("  ");
  Serial.print("Z: "); Serial.print(event.magnetic.z); Serial.print("  ");Serial.println("uT");

  // Hold the module so that Z is pointing 'up' and you can measure the heading with x&y
  // Calculate heading when the magnetometer is level, then correct for signs of axis.
  float heading = atan2(event.magnetic.x, event.magnetic.y);
  
  // Once you have your heading, you must then add your 'Declination Angle', which is the 'Error' of the magnetic field in your location.
  // Find yours here: http://www.magnetic-declination.com/
  // Mine is: -13* 2' W, which is ~13 Degrees, or (which we need) 0.22 radians
  // If you cannot find your Declination, comment out these two lines, your compass will be slightly off.
  float declinationAngle = 0.22;
  heading += declinationAngle;
  
  // Correct for when signs are reversed.
  if(heading < 0)
    heading += 2*PI;
    
  // Check for wrap due to addition of declination.
  if(heading > 2*PI)
    heading -= 2*PI;
   
  // Convert radians to degrees for readability.
  float headingDegrees = heading * 180/M_PI; 
  
  Serial.print("Heading (degrees): "); Serial.println(headingDegrees);
  
  delay(500);
}

Have you tried checking in a different location? You may be detecting a magnetic field from some nearby magnet or wire or large piece of metal.

What are the X, Y, and Z values? The earth's field runs from 25 to 65 microteslas (uT) so values over 65 would indicate an interfering field.

You need to go through the calibration process, which is built in to that compass chip.

As usual, Adafruit forgot to support that essential step, so unfortunately you are on your own. Here is a general overview of what is involved.

How do I do that? Is that a different program I have to run?

Sorry, I edited my post. See the HMC5883L datasheet for instructions. Consider also posting a complaint on the Adafruit forum, for their poor support.

Finally, google "arduino calibrate hmc5883l" for some leads.

johnwasser:
What are the X, Y, and Z values? The earth's field runs from 25 to 65 microteslas (uT) so values over 65 would indicate an interfering field.

Z and Y is mostly negative, and X runs from -400 (weird?) to 140... So there sure is a disturbance

there sure is a disturbance

Or a calibration problem.

If you rotate the sensor 90° the X value and Y value should swap (possibly changing sign). If they don't, the problem might be a something on the board creating a magnetic field (or a really bad sensor?)