How can I change the temperature value to a base64 image in Arduino?

I want to import image using LOLIN D32 and MLX90640 and output them to the serial monitor. Through the example code, we confirmed that the device was well connected.

mlx90640 sensor detects temperature and gets temperature array in 32*24 format

ex)
===========================WaveShare MLX90640 Thermal Camera===============================
27 28 26 28 29 29 30 30 30 30 29 29 28 28 26 25 24 26 28 29 30 29 27 27 27 26 27 28 28 28 29 32
27 26 27 28 27 28 29 29 29 28 29 29 29 29 26 24 24 25 29 29 30 30 29 28 27 27 28 27 28 28 29 29
27 27 26 28 27 27 27 28 27 27 28 29 30 29 28 26 24 25 28 29 30 30 29 29 28 28 28 29 29 29 29 30
27 27 27 27 27 27 27 26 27 27 28 28 29 30 28 27 26 25 28 29 30 30 31 30 30 30 30 30 30 30 29 29
27 27 26 27 27 27 26 27 27 27 28 28 30 30 30 29 27 26 28 30 31 31 30 30 30 30 31 31 30 31 30 31
27 27 28 27 27 27 27 27 27 27 27 27 30 30 30 29 27 27 28 30 30 30 30 29 30 30 30 30 30 31 30 30
27 27 27 28 27 27 26 27 27 26 27 27 29 30 30 30 29 28 30 30 31 30 30 30 30 30 30 31 31 31 32 33
27 27 27 27 27 27 27 26 26 27 27 27 29 29 31 30 30 30 30 30 31 30 30 30 30 30 31 30 31 31 32 33
27 27 26 27 27 27 27 27 27 27 27 28 29 30 30 31 31 31 31 32 31 30 29 30 29 29 31 31 32 32 32 33
27 27 27 27 27 27 27 27 27 28 27 27 29 30 31 31 31 31 31 31 31 30 30 29 30 30 31 31 31 32 33 32
27 27 26 27 27 27 27 27 28 28 27 27 28 29 29 30 30 30 30 31 31 30 29 30 30 30 31 31 32 32 32 32
28 27 27 26 27 28 28 27 28 28 28 27 27 27 28 28 30 30 30 31 30 31 30 30 30 30 30 31 32 32 32 33
28 27 26 27 28 27 28 28 28 27 29 29 29 28 26 28 29 30 29 30 30 30 30 30 31 31 31 32 32 32 32 31
27 27 28 28 28 28 28 28 28 28 30 30 30 29 27 27 28 30 30 30 30 30 30 30 31 31 32 32 32 32 31 31
28 27 28 28 29 28 28 29 30 30 32 32 31 31 29 29 29 29 29 30 30 29 30 30 31 31 32 33 32 31 32 32
27 27 28 28 28 28 28 29 31 31 33 32 32 31 31 30 29 29 30 29 29 29 30 30 31 32 32 32 31 31 31 31
28 27 28 28 29 28 30 31 32 33 33 33 33 33 32 32 32 31 31 31 30 30 31 31 31 32 31 31 31 31 31 31
28 29 28 28 29 29 31 31 32 33 33 33 33 33 33 33 33 32 32 32 31 31 31 31 31 31 31 31 31 30 32 31
29 30 29 30 31 32 32 33 33 33 33 34 34 34 33 33 33 33 33 33 32 31 31 31 31 31 30 31 30 30 30 31
29 30 30 30 32 32 33 33 33 33 34 34 34 34 34 34 33 33 33 33 32 32 31 31 31 32 31 30 30 31 30 31
31 31 31 32 32 32 34 33 33 33 33 34 34 34 34 34 34 33 33 33 33 32 31 32 32 31 30 31 31 30 31 31
31 32 32 32 32 33 33 33 33 34 34 34 34 34 34 34 34 34 33 33 32 32 32 31 30 30 30 31 30 31 31 33
32 33 32 33 33 33 33 34 34 34 34 35 34 34 34 34 34 34 33 34 32 32 31 31 31 31 32 32 33 32 32 34
31 32 33 33 33 33 34 34 34 35 35 34 34 35 34 35 34 34 34 34 33 32 32 32 32 32 32 33 33 33 33 33
===========================WaveShare MLX90640 Thermal Camera===============================

I want to convert these data values ​​into Image ​​and convert them into Base64 image strings.

here is my code

#include "Arduino.h"
#include "SPI.h"
#include "tft.h"
#include <Wire.h>

#include "MLX90640_API.h"
#include "MLX90640_I2C_Driver.h"

#include "Base64.h"


#define EMMISIVITY 0.95
#define INTERPOLATE false
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define TA_SHIFT 8 //Default shift for MLX90640 in open air

// Output size
// #define O_WIDTH 224
//  #define O_HEIGHT 168

//memory
#define O_WIDTH 112
#define O_HEIGHT 84

// #define O_WIDTH 32
// #define O_HEIGHT 24


#define O_RATIO O_WIDTH/32

paramsMLX90640 mlx90640;
uint8_t MLX90640_address = 0x33; //Default 7-bit unshifted address of the MLX90640

// Added for measure Temp
boolean measure = true;
float centerTemp;
unsigned long tempTime = millis();
unsigned long tempTime2 = 0;

// start with some initial colors
float minTemp = 20.0;
float maxTemp = 40.0;

// variables for interpolated colors
uint8_t red, green, blue;

// variables for row/column interpolation
float intPoint, val, a, b, c, d, ii;
int x, y, i, j;

// array for the 32 x 24 measured tempValues
static float tempValues[32 * 24];

float **interpolated = NULL;
uint16_t *imageData = NULL;

uint8_t* pixelData = (uint8_t*)malloc(O_WIDTH * O_HEIGHT * 3);

TFT tft;

void setup() {
  Serial.begin(115200);
  Serial.println("Hello.");

  // Connect thermal sensor.
  Wire.begin();
  Wire.setClock(400000); // Increase I2C clock speed to 400kHz
  Wire.beginTransmission((uint8_t)MLX90640_address);
  if (Wire.endTransmission() != 0) {
    Serial.println("MLX90640 not detected at default I2C address. Please check wiring.");
  }
  else {
    Serial.println("MLX90640 online!");
  }
  // Get device parameters - We only have to do this once
  int status;
  uint16_t eeMLX90640[832];
  status = MLX90640_DumpEE(MLX90640_address, eeMLX90640);
  if (status != 0) Serial.println("Failed to load system parameters");
  status = MLX90640_ExtractParameters(eeMLX90640, &mlx90640);
  if (status != 0) Serial.println("Parameter extraction failed");
  // Set refresh rate
  MLX90640_SetRefreshRate(MLX90640_address, 0x05); // Set rate to 8Hz effective - Works at 800kHz
  // Once EEPROM has been read at 400kHz we can increase
  Wire.setClock(800000);

  SPI.begin();
  tft.begin();
  tft.setRotation(0); // Use landscape format
  tft.fillScreen(TFT_BLACK);

  tft.setCursor(55, 228);
  tft.setTextColor(TFT_WHITE);
  tft.setTextSize(4);
  tft.print("WaveShare");

  // Prepare interpolated array
  interpolated = (float **)malloc(O_HEIGHT * sizeof(float *));
  for (int i = 0; i < O_HEIGHT; i++) {
    interpolated[i] = (float *)malloc(O_WIDTH * sizeof(float));
  }

  // Prepare imageData array
  imageData = (uint16_t *)malloc(O_WIDTH * O_HEIGHT * sizeof(uint16_t));

  // get the cutoff points for the color interpolation routines
  // note this function called when the temp scale is changed
}

void loop(void) {
  tempTime = millis();

  readTempValues();
  setTempScale();
  drawPicture();


  for (int y = 0; y < O_HEIGHT; y++) {
    for (int x = 0; x < O_WIDTH; x++) {
      uint16_t color565 = imageData[(y * O_WIDTH) + x];  
      convertToRGB(color565, &red, &green, &blue);  
      pixelData[(y * O_WIDTH + x) * 3] = red;
      pixelData[(y * O_WIDTH + x) * 3 + 1] = green;
      pixelData[(y * O_WIDTH + x) * 3 + 2] = blue;
    }
  }

  char *input = (char *)pixelData;
  char output[base64_enc_len(3)];
  String imageFile = "data:image/jpeg;base64,";
  for (int i=0;i<O_WIDTH * O_HEIGHT * 3;i++) {
    base64_encode(output, (input++), 3);
    if (i%3==0) imageFile += String(output);
  }
  int fbLen = imageFile.length();
  Serial.print("fbLen=");
  Serial.println(fbLen);


  Serial.println(imageFile);


  delay(3000);
}

void convertToRGB(uint16_t color565, uint8_t* r, uint8_t* g, uint8_t* b) {
    *r = (color565 >> 11) & 0x1F;  
    *r = (*r * 255) / 31;           
    
    *g = (color565 >> 5) & 0x3F;    
    *g = (*g * 255) / 63;           
    
    *b = color565 & 0x1F;         
    *b = (*b * 255) / 31;       
}

// Read pixel data from MLX90640.
void readTempValues() {
  for (uint8_t x = 0 ; x < 2 ; x++) // Read both subpages
  {
    uint16_t mlx90640Frame[834];
    int status = MLX90640_GetFrameData(MLX90640_address, mlx90640Frame);
    if (status < 0)
    {
      Serial.print("GetFrame Error: ");
      Serial.println(status);
    }

    float vdd = MLX90640_GetVdd(mlx90640Frame, &mlx90640);
    float Ta = MLX90640_GetTa(mlx90640Frame, &mlx90640);

    float tr = Ta - TA_SHIFT; //Reflected temperature based on the sensor ambient temperature

    MLX90640_CalculateTo(mlx90640Frame, &mlx90640, EMMISIVITY, tr, tempValues);
  }
}


int row;
float temp, temp2;

void interpolate() {
  for (row = 0; row < 24; row++) {
    for (x = 0; x < O_WIDTH; x++) {
      temp  = tempValues[(31 - (x / 7)) + (row * 32) + 1];
      temp2 = tempValues[(31 - (x / 7)) + (row * 32)];
      interpolated[row * 7][x] = lerp(temp, temp2, x % 7 / 7.0);
    }
  }
  for (x = 0; x < O_WIDTH; x++) {
    for (y = 0; y < O_HEIGHT; y++) {
      temp  = interpolated[y - y % 7][x];
      temp2 = interpolated[min((y - y % 7) + 7, O_HEIGHT - 7)][x];
      interpolated[y][x] = customLerp(temp, temp2, 1);//y%7/7.0);
    }
  }
}


// Linear interpolation
float customLerp(float v0, float v1, float t) {
  return v0 + t * (v1 - v0);
}


void drawPicture() {
  if (INTERPOLATE) {
    interpolate();
    for (y = 0; y < O_HEIGHT; y++) {
      for (x = 0; x < O_WIDTH; x++) {
        imageData[(y * O_WIDTH) + x] = getColor(interpolated[y][x]);
      }
    }
    //tft.pushImage(8, 8, O_WIDTH, O_HEIGHT, imageData);
  }
  else {
    for (y = 0; y < 24; y++) {
      for (x = 0; x < 32; x++) {
        tft.fillRect(8 + x * 7, 8 + y * 7, 7, 7, getColor(tempValues[(31 - x) + (y * 32)]));
      }
    }
  }
}



// Get color for temp value.
uint16_t getColor(float val) {
  /*
    pass in value and figure out R G B
    several published ways to do this I basically graphed R G B and developed simple linear equations
    again a 5-6-5 color display will not need accurate temp to R G B color calculation

    equations based on
    http://web-tech.ga-usa.com/2012/05/creating-a-custom-hot-to-cold-temperature-color-gradient-for-use-with-rrdtool/index.html

  */

  red = constrain(255.0 / (c - b) * val - ((b * 255.0) / (c - b)), 0, 255);

  if ((val > minTemp) & (val < a)) {
    green = constrain(255.0 / (a - minTemp) * val - (255.0 * minTemp) / (a - minTemp), 0, 255);
  }
  else if ((val >= a) & (val <= c)) {
    green = 255;
  }
  else if (val > c) {
    green = constrain(255.0 / (c - d) * val - (d * 255.0) / (c - d), 0, 255);
  }
  else if ((val > d) | (val < a)) {
    green = 0;
  }

  if (val <= b) {
    blue = constrain(255.0 / (a - b) * val - (255.0 * b) / (a - b), 0, 255);
  }
  else if ((val > b) & (val <= d)) {
    blue = 0;
  }
  else if (val > d) {
    blue = constrain(240.0 / (maxTemp - d) * val - (d * 240.0) / (maxTemp - d), 0, 240);
  }

  // use the displays color mapping function to get 5-6-5 color palet (R=5 bits, G=6 bits, B-5 bits)
  //Serial.println(String(val) + " -> " + String(red) + "|" + String(green) + "|" + String(blue));
  return tft.color565(red, green, blue);
}

void setTempScale() {
  minTemp = 255;
  maxTemp = 0;

  for (i = 0; i < 768; i++) {
    minTemp = min(minTemp, tempValues[i]);
    maxTemp = max(maxTemp, tempValues[i]);
  }
}

result :


=

How can I convert this data into a base64 image?

Sorry, the code is a mess.
I don't know what kind of board you have, but even on ESP32 it's not worth wasting memory so senselessly. You create about 80K intermediate arrays, and then try to put 30K binary data into a String class.

Some $0.02 about the code:

i) By the way, your image file is not jpeg:

ii) Why this strange multiplication?

Is it not the same as *r = *r << 3; ?

And finally, what's the point of converting a binary array to base64?

1 Like

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.