How to reverse a servo on Gyroscope

Hi

I don’t know what I should change to make the servos go in the opposite direction in to the MPU 6050.

This is a project for a gyro to keep things stable when you are holding a camera.

The code is below if you would like to take a look.
Thank you[/code]

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#include <Servo.h>
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

// Define the 3 servo motors
Servo servo0; //Z MOVEMENT
Servo servo1; //X MOVEMENT
Servo servo2; //Y MOVEMENT

float correct;
int j = 0;

#define OUTPUT_READABLE_YAWPITCHROLL

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards

bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         
VectorInt16 aa;         // [x, y, z]            
VectorInt16 aaReal;     // [x, y, z]            
VectorInt16 aaWorld;    // [x, y, z]            
VectorFloat gravity;    // [x, y, z]            
float euler[3];         // [psi, theta, phi]    
float ypr[3];           // [yaw, pitch, roll]   
uint8_t teapotPacket[14] = { '

, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, ‘\r’, ‘\n’ };

// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
mpuInterrupt = true;
}

// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif

Serial.begin(38400);
while (!Serial); // wait for Leonardo enumeration, others continue immediately

// initialize device
//Serial.println(F(“Initializing I2C devices…”));
mpu.initialize();
pinMode(INTERRUPT_PIN, INPUT);
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(17);
mpu.setYGyroOffset(-69);
mpu.setZGyroOffset(27);
mpu.setZAccelOffset(1551); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// turn on the DMP, now that it’s ready
// Serial.println(F(“Enabling DMP…”));
mpu.setDMPEnabled(true);

attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();

dmpReady = true;

// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
}

// Define the pins to which the 3 servo motors are connected
servo0.attach(10); //Z MOVEMENT
servo1.attach(9); //X MOVEMENT
servo2.attach(8); //Y MOVEMENT

}
// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
// if programming failed, don’t try to do anything
if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) {
if (mpuInterrupt && fifoCount < packetSize) {
  // try to get out of the infinite loop
  fifoCount = mpu.getFIFOCount();
}
}

// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & _BV(MPU6050_INTERRUPT_FIFO_OFLOW_BIT)) || fifoCount >= 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
fifoCount = mpu.getFIFOCount();
Serial.println(F(“FIFO overflow!”));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & _BV(MPU6050_INTERRUPT_DMP_INT_BIT)) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;

// Get Yaw, Pitch and Roll values
#ifdef OUTPUT_READABLE_YAWPITCHROLL
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

// Yaw, Pitch, Roll values - Radians to degrees
ypr[0] = ypr[0] * 180 / M_PI;
ypr[1] = ypr[1] * 180 / M_PI;
ypr[2] = ypr[2] * 180 / M_PI;

// Skip 300 readings (self-calibration process)
if (j <= 300) {
  correct = ypr[0]; // Yaw starts at random value, so we capture last value after 300 readings
  j++;
}
// After 300 readings
else {
  ypr[0] = ypr[0] - correct; // Set the Yaw to 0 deg - subtract  the last random Yaw value from the currrent value to make the Yaw 0 degrees
  // Map the values of the MPU6050 sensor from -90 to 90 to values suatable for the servo control from 0 to 180
  int servo0Value = map(ypr[0], -90, 90, 0, 180);
  int servo1Value = map(ypr[1], -90, 90, 0, 180);
  int servo2Value = map(ypr[2], -90, 90, 180, 0);

// Control the servos according to the MPU6050 orientation
  servo0.write(servo0Value);
  servo1.write(servo1Value);
  servo2.write(servo2Value);
 
}
#endif
}
}

MEMS devices such as the MPU6050 are, strictly speaking, "angular rate sensors" not "gyroscopes". They do not contain a spinning device and do not resist angular changes as does a gyroscope.

The confusion arises, perhaps, from the fact that spinning gyroscopes can be (and have commonly been) used as the active element in angular rate sensing, but it does not follow that all angular rate sensors are spinning gyroscopes. This is the case even though many sources, including MEMS manufacture literature, may refer to their angular rate sensor as a gyro.

Thus, one can't reverse the direction of rotation of the MPU6050 gyro because there isn't any rotation to reverse.

Thank you MrMark for helping.
After i read what you send I realised that I had made a mistake in what i had said.