#include “SIM900.h”
#include <SoftwareSerial.h>
#include “sms.h”
SMSGSM sms;
/*
State change detection (edge detection)
Often, you don’t need to know the state of a digital input all the time,
but you just need to know when the input changes from one state to another.
For example, you want to know when a button goes from OFF to ON. This is called
state change detection, or edge detection.
This example shows how to detect when a button or button changes from off to on
and on to off.
The circuit:
- pushbutton attached to pin 2 from +5V
- 10K resistor attached to pin 2 from ground
- LED attached from pin 13 to ground (or use the built-in LED on
most Arduino boards)
created 27 Sep 2005
modified 30 Aug 2011
by Tom Igoe
This example code is in the public domain.
http://arduino.cc/en/Tutorial/ButtonStateChange
*/
// this constant won’t change:
const int buttonPin = 4; // the pin that the pushbutton is attached to
const int ledPin = 13; // the pin that the LED is attached to
// Variables will change:
int buttonPushCounter = 0; // counter for the number of button presses
int buttonState = 0; // current state of the button
int lastButtonState = 0; // previous state of the button
float myval;
int numdata;
boolean started=false;
char smsbuffer[160];
char n[20];
//debug begin
char sms_position;
char phone_number[20]; // array for the phone number string
char sms_text[100];
int i;
//debug end
void setup()
{
// initialize the button pin as a input:
pinMode(buttonPin, INPUT);
// initialize the LED as an output:
pinMode(ledPin, OUTPUT);
// initialize serial communication:
Serial.begin(9600);
Serial.println (“Arduino on”);
if (gsm.begin(4800));
Serial.print (“GSM on”);
if (sms.SendSMS("+27630812488", “power on”));
Serial.println("\nSMS sent OK");
}
void loop() {
// read the pushbutton input pin:
buttonState = digitalRead(buttonPin);
// compare the buttonState to its previous state
if (buttonState != lastButtonState) {
// if the state has changed, increment the counter
if (buttonState == HIGH) {
// if the current state is HIGH then the button
// wend from off to on:
buttonPushCounter++;
myval += 0.2;
Serial.print("Rainfall: ");
Serial.print (myval);
Serial.println(“mm”);
}
else {
// if the current state is LOW then the button
// wend from on to off:
}
// Delay a little bit to avoid bouncing
delay(50);
}
// save the current state as the last state,
//for next time through the loop
lastButtonState = buttonState;
// turns on the LED every four button pushes by
// checking the modulo of the button push counter.
// the modulo function gives you the remainder of
// the division of two numbers:
if (buttonPushCounter % 4 == 0) {
digitalWrite(ledPin, HIGH);
} else {
digitalWrite(ledPin, LOW);
}
}