Interupt only firing once when using Virtual Vire with MPU6050_6Axis_MotionApps2

Hey folks,
i want to send sensordata via rf. I am using the MPU6050_6Axis_MotionApps2-lib to get nice data from my sensor. That works pretty well. Now I wanted to send this data over rf with the Virtual Wire lib.
Sending works when just sending static data but as soon as I use the example of the MPU6050_6Axis_MotionApps2 together with rf it stops working.
The main loop still runs but the condition for the inner loop is never fullfilled anymore:

while (!mpuInterrupt && fifoCount < packetSize){
// my code shorted down to the core problem

Serial.println(“Sending”); // prints once and never again
char buf[7] = “Hello\0”;
vw_send((uint8_t *)buf, 7);
vw_wait_tx();
}

You may look in the example of the MPU6050_6Axis_MotionApps2 to see the full code: MPU6050_DMP6 Example

Does someone know what the problem is here?

The problem is not in what you posted. Post all your code, using code tags ("</>") button.

Here you go:

// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>

/*
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif


#include <VirtualWire.h> // for sending over rf

MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

#define YAW_PIN   8
#define PITCH_PIN 5
#define ROLL_PIN  3
#define TX_PIN    4 // Transmitter Pin

#define OUTPUT_READABLE_YAWPITCHROLL


#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '

, 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, ‘\r’, ‘\n’ };

// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
   mpuInterrupt = true;
}

int strlen(char* c){

int cnt = 0;
 while(c[cnt++] != ‘\0’);

return cnt-1;

}

void sendMessage(float val1, float val2, float val3) {

char buf[18] = { ‘\0’ };

itoa((uint32_t)val1, buf, 16);

int len = strlen(buf);

buf[len] = ‘:’;

itoa((uint32_t)val2, buf+len+1, 16);

len = strlen(buf);

buf[len] = ‘:’;

itoa((uint32_t)val3, buf+len+1, 16);

Serial.println(buf);

vw_send((uint8_t *)buf, strlen(buf));

// Wait for message to be send
   vw_wait_tx();

}

void setup() {
   // join I2C bus (I2Cdev library doesn’t do this automatically)
   #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
       Wire.begin();
       TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
   #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
       Fastwire::setup(400, true);
   #endif

// initialize serial communication
   // (115200 chosen because it is required for Teapot Demo output, but it’s
   // really up to you depending on your project)
   Serial.begin(115200);
   while (!Serial); // wait for Leonardo enumeration, others continue immediately

// initialize device
   Serial.println(F(“Initializing I2C devices…”));
   mpu.initialize();

// verify connection
   Serial.println(F(“Testing device connections…”));
   Serial.println(mpu.testConnection() ? F(“MPU6050 connection successful”) : F(“MPU6050 connection failed”));

// wait for ready
   Serial.println(F("\nSend any character to begin DMP programming and demo: "));
   while (Serial.available() && Serial.read()); // empty buffer
   while (!Serial.available());                 // wait for data
   while (Serial.available() && Serial.read()); // empty buffer again

// load and configure the DMP
   Serial.println(F(“Initializing DMP…”));
   devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
   mpu.setXGyroOffset(220);
   mpu.setYGyroOffset(76);
   mpu.setZGyroOffset(-85);
   mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
   if (devStatus == 0) {
       // turn on the DMP, now that it’s ready
       Serial.println(F(“Enabling DMP…”));
       mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
       Serial.println(F(“Enabling interrupt detection (Arduino external interrupt 0)…”));
       attachInterrupt(0, dmpDataReady, RISING);
       mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it’s okay to use it
       Serial.println(F(“DMP ready! Waiting for first interrupt…”));
       dmpReady = true;

// get expected DMP packet size for later comparison
       packetSize = mpu.dmpGetFIFOPacketSize();
   } else {
       // ERROR!
       // 1 = initial memory load failed
       // 2 = DMP configuration updates failed
       // (if it’s going to break, usually the code will be 1)
       Serial.print(F(“DMP Initialization failed (code “));
       Serial.print(devStatus);
       Serial.println(F(”)”));
   }

// configure LED for output
   pinMode(LED_PIN, OUTPUT);

pinMode(YAW_PIN, OUTPUT);
   pinMode(PITCH_PIN, OUTPUT);
   pinMode(ROLL_PIN, OUTPUT);

pinMode(TX_PIN, OUTPUT);

vw_set_ptt_inverted(true);
   vw_setup(2000);
   vw_set_tx_pin(TX_PIN);
}

float map2(float a, float b, float c){
 return (a + b/2)/b * c;
}

void loop() {

// if programming failed, don’t try to do anything
   if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
   while (!mpuInterrupt && fifoCount < packetSize) {

float val[3];

val[0] = map2(ypr[0], 2*M_PI, 255);
     val[1] = map2(ypr[1], M_PI, 255);
     val[2] = map2(ypr[2], M_PI, 255);

Serial.println(“send start”);
     sendMessage(val[0], val[1], val[2]);
     Serial.println(“send done”);

}

// reset interrupt flag and get INT_STATUS byte
   mpuInterrupt = false;
   mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
   fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
   if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
       // reset so we can continue cleanly
       mpu.resetFIFO();
       Serial.println(F(“FIFO overflow!”));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
   } else if (mpuIntStatus & 0x02) {
       // wait for correct available data length, should be a VERY short wait
       while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
       mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available
       // (this lets us immediately read more without waiting for an interrupt)
       fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_YAWPITCHROLL
           // display Euler angles in degrees
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           mpu.dmpGetGravity(&gravity, &q);
           mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
       #endif

// blink LED to indicate activity
       blinkState = !blinkState;
       digitalWrite(LED_PIN, blinkState);
   }
}