Hi All, new here as a poster but long time consumer of good advise. my searches have drawn a blank so hoping for some good advice. I'm currently building a 7x40 led matrix with 5x 74HC595 shift resistors for the 40x columns and a CD4017 Decade Counter for the Rows. I was looking at adapting the below code but it states a limit of 24 columns for the shift resistors. I dont fully understand the limit and therefore i dont have the knowledge on what to change to allow up to 40 columns. most of the examples ive seen put the columns into zones but these use a 74HC595 for the rows aswell and my attempts and merging code from these into one with the 4017 have been unsuccessful.
p.s. im aware that most of the characters are configured for 6 rows, this was a work in progress until i found the 24 column limit.
Thanks in advance.
#define BA {B01110000,B10001000,B10001000,B11111000,B10001000,B10001000,B10001000}
#define BB {B11110000,B10001000,B10001000,B11110000,B10001000,B10001000,B11110000}
#define BC {B01110000,B10001000,B10000000,B10000000,B10000000,B10001000,B01110000}
#define BD {B11110000,B10001000,B10001000,B10001000,B10001000,B11110000}
#define BE {B11111000,B10000000,B10000000,B11110000,B10000000,B11111000}
#define BF {B11111000,B10000000,B10000000,B11110000,B10000000,B10000000}
#define BG {B01110000,B10001000,B10000000,B10011000,B10001000,B01110000}
#define BH {B10001000,B10001000,B11111000,B10001000,B10001000,B10001000}
#define BI {B11111000,B00100000,B00100000,B00100000,B00100000,B11111000}
#define BJ {B00111000,B00010000,B00010000,B00010000,B10010000,B01100000}
#define BM {B10001000,B11011000,B10101000,B10101000,B10001000,B10001000}
#define BN {B10001000,B11001000,B10101000,B10101000,B10011000,B10001000}
#define BL {B10000000,B10000000,B10000000,B10000000,B10000000,B11111000}
#define BO {B01110000,B10001000,B10001000,B10001000,B10001000,B01110000}
#define BP {B11110000,B10001000,B10001000,B11110000,B10000000,B10000000}
#define BQ {B01110000,B10001000,B10101000,B10011000,B01111000,B00001000}
#define BR {B11110000,B10001000,B10001000,B11110000,B10001000,B10001000}
#define BS {B01110000,B10001000,B01100000,B00010000,B10001000,B01110000}
#define BK {B10001000,B10010000,B11100000,B11100000,B10010000,B10001000}
#define BT {B11111000,B00100000,B00100000,B00100000,B00100000,B00100000}
#define BU {B10001000,B10001000,B10001000,B10001000,B10001000,B01110000}
#define BV {B10001000,B10001000,B10001000,B10001000,B01010000,B00100000}
#define BW {B10001000,B10001000,B10101000,B10101000,B10101000,B01010000,B10001000}
#define BX {B10001000,B01010000,B00100000,B00100000,B01010000,B10001000}
#define BY {B10001000,B01010000,B00100000,B00100000,B00100000,B00100000}
#define BZ {B11111000,B00001000,B00110000,B01100000,B10000000,B11111000}
#define LA{B00000000,B01110000,B00001000,B01111000,B10001000,B01111000}
#define LB{B10000000,B10000000,B10110000,B11001000,B10001000,B11110000}
#define LC{B00000000,B01110000,B10000000,B10000000,B10001000,B01110000}
#define LD{B00001000,B00001000,B01111000,B10001000,B10001000,B01111000}
#define LE{B00000000,B01110000,B10001000,B11111000,B10000000,B01110000}
#define LF{B00110000,B01001000,B01000000,B11100000,B01000000,B01000000}
#define LG{B00000000,B01111000,B10001000,B01111000,B00001000,B01110000}
#define LH{B10000000,B10000000,B10110000,B11001000,B10001000,B10001000}
#define LI{B00100000,B00000000,B01100000,B00100000,B00100000,B01111000}
#define LJ{B00010000,B00000000,B00111000,B00010000,B10010000,B01100000}
#define LK{B10000000,B10010000,B10100000,B11000000,B10100000,B10010000}
#define LL{B01100000,B00100000,B00100000,B00100000,B00100000,B01111000}
#define LM{B00000000,B00000000,B11010000,B10101000,B10101000,B10001000}
#define LN{B00000000,B00000000,B10110000,B11001000,B10001000,B10001000}
#define LO{B00000000,B01110000,B10001000,B10001000,B10001000,B01110000}
#define LP{B00000000,B11110000,B10001000,B11110000,B10000000,B10000000}
#define LQ{B00000000,B01101000,B10011000,B01111000,B00001000,B00001000}
#define LR{B00000000,B00000000,B10110000,B11001000,B10000000,B10000000}
#define LS{B00000000,B01110000,B10000000,B01110000,B00001000,B11110000}
#define LT{B01000000,B01000000,B11100000,B01000000,B01001000,B00110000}
#define LU{B00000000,B00000000,B10001000,B10001000,B10011000,B01101000}
#define LV{B00000000,B00000000,B10001000,B10001000,B01010000,B00100000}
#define LW{B00000000,B00000000,B10001000,B10101000,B10101000,B01010000}
#define LX{B00000000,B10001000,B01010000,B00100000,B01010000,B10001000}
#define LY{B00000000,B10001000,B10001000,B01111000,B00001000,B01110000}
#define LZ{B00000000,B11111000,B00010000,B00100000,B01000000,B11111000}
#define SPACE{B00000000,B00000000,B00000000,B00000000,B00000000,B00000000}
#define NUM0{B01110000,B10011000,B10101000,B10101000,B11001000,B01110000}
#define NUM1{B00100000,B01100000,B10100000,B00100000,B00100000,B01110000}
#define NUM2{B01110000,B10001000,B00001000,B01110000,B10000000,B11111000}
#define NUM3{B11110000,B00001000,B00001000,B01111000,B00001000,B11110000}
#define NUM4{B10001000,B10001000,B10001000,B11111000,B00001000,B00001000}
#define NUM5{B11111000,B10000000,B11110000,B00001000,B10001000,B01110000}
#define NUM6{B11111000,B10000000,B11111000,B10001000,B10001000,B11111000}
#define NUM7{B11111000,B00001000,B00001000,B01111000,B00001000,B00001000}
#define NUM8{B11111000,B10001000,B11111000,B10001000,B10001000,B11111000}
#define NUM9{B11111000,B10001000,B11111000,B00001000,B00001000,B11111000}
#define DEVIDE{B00001000,B00010000,B00100000,B00100000,B01000000,B10000000}
#define TWODOTS{B01100000,B01100000,B00000000,B00000000,B01100000,B01100000}
#define DOT{B00000000,B00000000,B00000000,B00000000,B01100000,B01100000}
#define COMA{B00000000,B00000000,B00000000,B00110000,B00110000,B01100000}
#define LINE{B00000000,B00000000,B11111000,B11111000,B00000000,B00000000}
#define QUASTION{B01110000,B10001000,B00010000,B00100000,B00000000,B00100000}
#define MARK{B00100000,B01110000,B01110000,B00100000,B00000000,B00100000}
int latchPin = 10;
int clockPin = 13;
int dataPin = 11;
int clock = 9;
int Reset = 8;
int latchPinPORTB = latchPin - 8;
int clockPinPORTB = clockPin - 8;
int dataPinPORTB = dataPin - 8;
int i = 0;
long scrolling_word[7];
int array_turn=0;
byte your_text[8][7]={BW,BA};//PUT YOU TEXT HERE
void setup(){
Serial.begin(9600);
pinMode(dataPin,OUTPUT);
pinMode(clockPin,OUTPUT);
pinMode(latchPin,OUTPUT);
pinMode(clock,OUTPUT);
pinMode(Reset,OUTPUT);
digitalWrite(Reset,HIGH);
digitalWrite(Reset,LOW);
setupSPI();
}
void display_word(int loops,byte word_print[][7],int num_patterns,int delay_langth){// this function displays your symbols
i = 0;// resets the counter fot the 4017
for(int g=0;g<7;g++)//resets the the long int where your word goes
scrolling_word[g] = 0;
for(int x=0;x<num_patterns;x++){//main loop, goes over your symbols
// you will need to find a better way to make the symbols scroll my way is limited for 24 columns
for(int r=0;r<7;r++)//puts the buildes the first symbol
scrolling_word[r] |= word_print[x][r];
for (int z=0;z<7;z++){//the sctolling action
for(int p=0;p<7;p++)
scrolling_word[p] = scrolling_word[p] << 1;
// end of the scrolling funcion
for(int t=0;t<delay_langth;t++){// delay function, it just loops over the same display
for(int y=0;y<7;y++){// scaning the display
if(i == 7){// counting up to 7 with the 4017
digitalWrite(Reset,HIGH);
digitalWrite(Reset,LOW);
i = 0;
}
latchOff();
spi_transfer(make_word(0x01000000,y));// sending the data
spi_transfer(make_word(0x00010000,y));
spi_transfer(make_word(0x00000100,y));
latchOn();
delayMicroseconds(3000);//waiting a bit
latchOff();
spi_transfer(0);// clearing the data
spi_transfer(0);
spi_transfer(0);
latchOn();
digitalWrite(clock,HIGH);//counting up with the 4017
digitalWrite(clock,LOW);
i++;
}
}
}
}
finish_scroll(delay_langth);
}
void finish_scroll(int delay_scroll){// this function is the same as the funcion above, it just finishing scrolling
for (int n=0;n<24;n++){
for(int h=0;h<7;h++)
scrolling_word[h] = scrolling_word[h] << 1;
for(int w=0;w<delay_scroll;w++){
for(int k=0;k<7;k++){
if(i == 7){
digitalWrite(Reset,HIGH);
digitalWrite(Reset,LOW);
i = 0;
}
latchOff();
spi_transfer(make_word(0x01000000,k));
spi_transfer(make_word(0x00010000,k));
spi_transfer(make_word(0x00000100,k));
latchOn();
delayMicroseconds(3000);
latchOff();
spi_transfer(0);
spi_transfer(0);
spi_transfer(0);
latchOn();
digitalWrite(clock,HIGH);
digitalWrite(clock,LOW);
i++;
}
}
}
}
byte make_word (long posistion,byte turn){
byte dummy_word = 0;
for(int q=0;q<8;q++){
if(scrolling_word[turn] & (posistion<<q))
dummy_word |= 0x01<<q;
}
return dummy_word;
}
void loop() {
display_word(1,your_text,8,15);// calls for the display_pattern function and says that int loop = 15(if you do more loop the pattern whould scrole slower).
}
void latchOn(){
bitSet(PORTB,latchPinPORTB);
}
void latchOff(){
bitClear(PORTB,latchPinPORTB);
}
void setupSPI(){
byte clr;
SPCR |= ( (1<<SPE) | (1<<MSTR) ); // enable SPI as master
//SPCR |= ( (1<<SPR1) | (1<<SPR0) ); // set prescaler bits
SPCR &= ~( (1<<SPR1) | (1<<SPR0) ); // clear prescaler bits
clr=SPSR; // clear SPI status reg
clr=SPDR; // clear SPI data reg
SPSR |= (1<<SPI2X); // set prescaler bits
//SPSR &= ~(1<<SPI2X); // clear prescaler bits
delay(10);
}
byte spi_transfer(byte data)
{
SPDR = data; // Start the transmission
while (!(SPSR & (1<<SPIF))) // Wait the end of the transmission
{
};
return SPDR; // return the received byte, we don't need that
}