Hallo Forum,
ich nutze die Arduino IDE 2.04 .
Mein Kit Dragino Single Channel LoRa IoT Kit v2 .
Das Kit enthält den Arduino Uno.
https://www.dragino.com/downloads/downloads/LoRa_IoT_Kit/v2-Kit/Single%20Channel%20LoRa%20IoT%20Kit%20v2%20User%20Manual_v1.0.7.pdf
Seite 34
Den folgenden Sketch möchte ich einsetzen:
/*******************************************************************************
* Copyright (c) 2019 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses ABP (Activation-by-personalisation), where a DevAddr and
* Session keys are preconfigured (unlike OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
*
* To use this sketch, first register your application and device with
* the things network, to set or generate a DevAddr, NwkSKey and
* AppSKey. Each device should have their own unique values for these
* fields.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <dht.h>
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
dht DHT;
#define DHT11_PIN A0
const int ctl_pin=4; //define the output pin of realy
const int flame_pin=3; //define the input pin of flame sensor
// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const PROGMEM u1_t NWKSKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const u1_t PROGMEM APPSKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// LoRaWAN end-device address (DevAddr)
static const u4_t DEVADDR = 0x00000000; // <-- Change this address for every node!
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static float temperature,humidity,tem,hum;
static uint8_t LPP_data[13] = {0x01,0x67,0x00,0x00,0x02,0x68,0x00,0x03,0x01,0x00,0x04,0x00,0x00}; //0xO1,0x02,0x03,0x04 is Data Channel,0x67,0x68,0x01,0x00 is Data Type
static uint8_t opencml[4]={0x03,0x00,0x64,0xFF},closecml[4]={0x03,0x00,0x00,0xFF}; //the payload of the cayenne or ttn downlink //0xO1,0x02 is Data Channel,0x67,0x68 is Data Type
static unsigned int count = 1;
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2, 6, 7},
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if(LMIC.dataLen>0)
{
int i,j=0;
uint8_t received[4]={0x00,0x00,0x00,0x00};
Serial.println("Received :");
for(i=9;i<(9+LMIC.dataLen);i++) //the received buf
{
Serial.print(LMIC.frame[i],HEX);
received[j]=LMIC.frame[i];
j++;
Serial.print(" ");
}
Serial.println();
if ((received[0]==opencml[0])&&(received[1]==opencml[1])&&(received[2]==opencml[2])&&(received[3]==opencml[3])) {
Serial.println("Set pin to HIGH.");
digitalWrite(ctl_pin, HIGH);
}
if ((received[0]==closecml[0])&&(received[1]==closecml[1])&&(received[2]==closecml[2])&&(received[3]==closecml[3])) {
Serial.println("Set pin to LOW.");
digitalWrite(ctl_pin, LOW);
}
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void dhtTem()
{
int16_t tem_LPP;
temperature = DHT.read11(DHT11_PIN); //Read Tmperature data
tem = DHT.temperature*1.0;
humidity = DHT.read11(DHT11_PIN); //Read humidity data
hum = DHT.humidity* 1.0;
Serial.print("########### ");
Serial.print("COUNT=");
Serial.print(count);
Serial.println(" ###########");
Serial.println(F("The temperature and humidity:"));
Serial.print("[");
Serial.print(tem);
Serial.print("℃");
Serial.print(",");
Serial.print(hum);
Serial.print("%");
Serial.print("]");
Serial.println("");
count++;
tem_LPP=tem * 10;
LPP_data[2] = tem_LPP>>8;
LPP_data[3] = tem_LPP;
LPP_data[6] = hum * 2;
}
void pinread()
{
int val,val1;
val=digitalRead(ctl_pin);
val1=digitalRead(flame_pin);
if(val==1)
{
LPP_data[9]=0x01;
}
else
{
LPP_data[9]=0x00;
}
if(val1==1)
{
LPP_data[12]=0x01;
}
else
{
LPP_data[12]=0x00;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
dhtTem();
pinread();
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1,LPP_data, sizeof(LPP_data), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(9600);
while(!Serial);
Serial.println("Connect to TTN and Send data to mydevice cayenne(Use DHT11 Sensor):");
pinMode(ctl_pin,OUTPUT);
pinMode(flame_pin,INPUT);
// attachInterrupt(1,fire,LOW); //no connect Flame sensor should commented this code
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
do_send(&sendjob);
}
void fire()
{
LPP_data[12]=0x00;
dhtTem();
LMIC_setTxData2(1,LPP_data, sizeof(LPP_data), 0);
Serial.println("Have fire,the temperature is send");
}
void loop() {
os_runloop_once();
}
Meine Fehlermeldung beim kompilieren:
Compilation error: 'BB75C78772Exxxxx755E0C203E0B89E6' was not declared in this scope
Vermutetes Problem:
// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const PROGMEM u1_t NWKSKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const u1_t PROGMEM APPSKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// LoRaWAN end-device address (DevAddr)
static const u4_t DEVADDR = 0x00000000; // <-- Change this address for every node!
Wie stelle ich die von The Think Network v3 entnommen Keys in die erforderliche Arduino Sketch Form um? Siehe dazu Bild "Seite 34" oder PDF File.
Ist mein Anliegen verständlich oder fehlen weitere Informatioen?
VG
ardianx
EKLAERUNGEN
ABP – Activation by Personalization
ABP ist die Art und Weise, wie ein Endgerät zu einem bestimmten LoRa-Netzwerk gehören kann, ohne unter bestimmten Bedingungen einen Join-Vorgang durchzuführen. Im ABP-Modus verfügt das Endgerät nicht über DevEUI, AppEUI und AppKey, die für das Join-Verfahren unerlässlich sind. Die Aktivierung eines Endgeräts durch Personalisierung bedeutet, dass der DevAddr und die zwei Sitzungsschlüssel Nwk_SKey und App_SKey direkt im Endgerät gespeichert werden, anstatt während des Join-Vorgangs von DevEUI, AppEUI, AppKey und NwkKey abgeleitet zu werden.