Multiple Pulse Sensor

Hello all,

I'm using the Pulse Sensors from https://pulsesensor.com/ and while it works fine with one sensors, I'm struggling to make all 4 sensors work at the same time.

I've had a look at an old forum postand while they recommend for loops in the interrrupt and array variables, I really can't make it work, or really understand how it works.

Any help would be very appreciated!!

I'm attaching my curent code, which is showing me two signals on serial plotter, and making both leds blink at each heart pulse (I'm not using the fade led yet). This code s however giving me weird random results (9 outputs instead of 6?)

4Sensors_SignalsOnly.ino (4.27 KB)

Interrupt.ino (5.77 KB)

Help us to help you by posting your code here rather than attaching it.

#define SERIAL_PLOTTER 2

static int outputType = SERIAL_PLOTTER;

//  VARIABLES
int pulsePin1 = 0;                 // Pulse Sensor purple wire connected to analog pin 0
int pulsePin2 = 1;                 // Pulse Sensor purple wire connected to analog pin 1
int blinkPin1 = 13;                // pin to blink led at each beat
int blinkPin2 = 12;
int fadePin = 5;                  // pin to do fancy classy fading blink at each beat
int fadeRate = 0;                 // used to fade LED on with PWM on fadePin


// these variables are volatile because they are used during the interrupt service routine!
volatile int BPM;                   // used to hold the pulse rate
volatile int Signal1;                // holds the incoming raw data
volatile int Signal2;
volatile int IBI = 600;             // holds the time between beats, must be seeded! 
volatile boolean Pulse = false;     // true when pulse wave is high, false when it's low
volatile boolean QS = false;        // becomes true when Arduino finds a beat.

void setup(){
  pinMode(blinkPin1,OUTPUT);         // pin that will blink to your heartbeat!
  pinMode(blinkPin2,OUTPUT);
  pinMode(fadePin,OUTPUT);          // pin that will fade to your heartbeat!
  Serial.begin(115200);             // we agree to talk fast!
  interruptSetup();                 // sets up to read Pulse Sensor signal every 2mS 
   // UN-COMMENT THE NEXT LINE IF YOU ARE POWERING The Pulse Sensor AT LOW VOLTAGE, 
   // AND APPLY THAT VOLTAGE TO THE A-REF PIN
   //analogReference(EXTERNAL);
}


void loop(){ 

  diffSignalOutput(Signal1);
  Serial.print(",");
  diffSignalOutput(Signal2);
  Serial.println("");
}

void diffSignalOutput(int signals){
    //Serial.print(BPM);
    //Serial.print(",");
    //Serial.print(IBI);
    //Serial.print(",");
    Serial.print(signals);

    
  if (QS == true){                       // Quantified Self flag is true when arduino finds a heartbeat
        fadeRate = 255;                  // Set 'fadeRate' Variable to 255 to fade LED with pulse
        QS = false;                      // reset the Quantified Self flag for next time    
  }

  ledFadeToBeat();
  
  delay(20);                             //take a break
}

void ledFadeToBeat(){
    fadeRate -= 15;                         //  set LED fade value
    fadeRate = constrain(fadeRate,0,255);   //  keep LED fade value from going into negative numbers!
    analogWrite(fadePin,fadeRate);          //  fade LED
  }

And the Interrupt is

volatile int rate[10];                             // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;          // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;           // used to find IBI
volatile int P =512;                      // used to find peak in pulse wave, seeded
volatile int T = 512;                     // used to find trough in pulse wave, seeded
volatile int thresh = 512;                // used to find instant moment of heart beat, seeded
volatile int amp = 100;                   // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;        // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;      // used to seed rate array so we startup with reasonable BPM


void interruptSetup(){     
  // Initializes Timer2 to throw an interrupt every 2mS.

  TCCR2A = 0x02;     // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE
  TCCR2B = 0x06;     // DON'T FORCE COMPARE, 256 PRESCALER 
  OCR2A = 0X7C;      // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE
  TIMSK2 = 0x02;     // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A
  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED      
} 


void tryISR(int signals, int blinks){

  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise
  
      //  find the peak and trough of the pulse wave
  if(signals < thresh && N > (IBI/5)*3){     // avoid dichrotic noise by waiting 3/5 of last IBI
    if (signals < T){                        // T is the trough
      T = signals;                           //keep track of lowest point in pulse wave 
    }
  }

  if(signals > thresh && signals > P){          // thresh condition helps avoid noise
    P = signals;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (signals > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){        
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      digitalWrite(blinks,HIGH);                // turn on pin 13 LED
      IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = IBI;                      
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag
        sei();                               // enable interrupts again
        return;                              // IBI value is unreliable so discard it
      }   


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable    

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value 
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values 
      BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      QS = true;                              // set Quantified Self flag 
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }                       
  }

  if (signals < thresh && Pulse == true){   // when the values are going down, the beat is over
    digitalWrite(blinks,LOW);            // turn off pin 13 LED
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 512;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }
  
}


// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE. 
// Timer 2 makes sure that we take a reading every 2 miliseconds
ISR(TIMER2_COMPA_vect){                       // triggered when Timer2 counts to 124
  cli();                                      // disable interrupts while we do this
  Signal1 = analogRead(pulsePin1);            // read the Pulse Sensor 
  Signal2 = analogRead(pulsePin2);
  sampleCounter += 2;                         // keep track of the time in mS with this variable
  
  tryISR(Signal1, blinkPin1);
  tryISR(Signal2, blinkPin2);      


  sei();                                   // enable interrupts when youre done!
}// end isr

You really dont need interrupts to do this. It adds complexity and prevents you from doing useful things like Serial.print()

The correct names of the first two analog pins are A0 and A1. Use these names instead of the bare 0 and 1 where you assign those to the pulse pins.

The function tryISR() stores some data in P and T. By calling it twice for the two sensors, you don't have 2 copies of P and T.

Try learning about arrays. With 4 sensors in your future you are going to need them.

Thank you MorganS

The Interrupt is from the code made by the creator of the pulse sensors, so I've just been using it and making a few changes.

I'll do the changes you recommended, thanks

Also, how would you recommend using the arrays?

AS HeartRate[]={Signal, BPM, IBI) and then Serial Print it

or as Signals [] = {Signal1, Signal2, Signal3, SIgnal4} and same for BPM and IBI

FOund a solution here: