if i comment out the setPayloadSize (uint8_t size) function the code works properly.
I have attached the capacitors as recommended both 0.1 and 10uf also the modules are being powered from an external 3.3v supply. grounds of both power supply and arduino are connected.
1 node is run by uno 2nd node by nano
Wireless problems can be very difficult to debug so get the wireless part working on its own before you start adding any other features.
The examples are as simple as I could make them and they have worked for other Forum members. If you get stuck it will be easier to help with code that I am familiar with. Start by getting the first example to work
Ok I tried the simple one way transmission example and it works i guess.
this is the output of serial monitor from TX side
Data Sent Message 8 Acknowledge received
Data Sent Message 9 Acknowledge received
Data Sent Message 0 Acknowledge received
Data Sent Message 1 Acknowledge received
Data Sent Message 2 Acknowledge received
Data Sent Message 3 Acknowledge received
Data Sent Message 4 Acknowledge received
some problem with the RX side. It only prints the first few lines the the serial monitor stops printing
SimpleRx Starting
Data received
Data received
Data received
Data received
Data received
What should be the next step in debugging the problem
I uploaded the Simple one way transmission example from the post you mentioned
here is the code
TX
// SimpleTx - the master or the transmitter
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#define CE_PIN 9
#define CSN_PIN 10
const byte slaveAddress[5] = {'R','x','A','A','A'};
RF24 radio(CE_PIN, CSN_PIN); // Create a Radio
char dataToSend[10] = "Message 0";
char txNum = '0';
unsigned long currentMillis;
unsigned long prevMillis;
unsigned long txIntervalMillis = 1000; // send once per second
void setup() {
Serial.begin(9600);
Serial.println("SimpleTx Starting");
radio.begin();
radio.setDataRate( RF24_250KBPS );
radio.setRetries(3,5); // delay, count
radio.openWritingPipe(slaveAddress);
}
//====================
void loop() {
currentMillis = millis();
if (currentMillis - prevMillis >= txIntervalMillis) {
send();
prevMillis = millis();
}
}
//====================
void send() {
bool rslt;
rslt = radio.write( &dataToSend, sizeof(dataToSend) );
// Always use sizeof() as it gives the size as the number of bytes.
// For example if dataToSend was an int sizeof() would correctly return 2
Serial.print("Data Sent ");
Serial.print(dataToSend);
if (rslt) {
Serial.println(" Acknowledge received");
updateMessage();
}
else {
Serial.println(" Tx failed");
}
}
//================
void updateMessage() {
// so you can see that new data is being sent
txNum += 1;
if (txNum > '9') {
txNum = '0';
}
dataToSend[8] = txNum;
}
RX
// SimpleRx - the slave or the receiver
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#define CE_PIN 9
#define CSN_PIN 10
const byte thisSlaveAddress[5] = {'R','x','A','A','A'};
RF24 radio(CE_PIN, CSN_PIN);
char dataReceived[10]; // this must match dataToSend in the TX
bool newData = false;
//===========
void setup() {
Serial.begin(9600);
Serial.println("SimpleRx Starting");
radio.begin();
radio.setDataRate( RF24_250KBPS );
radio.openReadingPipe(1, thisSlaveAddress);
radio.startListening();
}
//=============
void loop() {
getData();
showData();
}
//==============
void getData() {
if ( radio.available() ) {
radio.read( &dataReceived, sizeof(dataReceived) );
newData = true;
}
}
void showData() {
if (newData == true) {
Serial.print("Data received ");
Serial.println(dataReceived);
newData = false;
}
}
As soon as i reset the arduino uno (The RX) it prints 5 lines of data received message and then stops printing.