Hello,
I am a beginner when it comes to programming, so please be nice while looking through by code. I've researched and consulted with a few folks on the best approaches for my project. My project is the electronic light sequence and audio from ghostbusters. I've seen a few examples, and even an example of a complete code...however, I am really trying to teach myself and understand rather than a blanket copy & paste. I think this is a good project to learn on, and plus I can accomplish my childhood dream of being a ghostbuster XD
My issue arrises when I introduce the light sequence, which is controlled by 2 595 shift registers, into the code that contains the button array. The light sequence works perfectly on its own...in a seperate sketh without defining buttons. However, even if I only contain the working code for the lights in the LOOP, without any buttons, the light still do not work. FYI - the audio works with the buttons, but the lights do not. Is there a conflict that I am not seeing between buttons and how I am controlling my light sequence?
Thanks for help,
-Greg
#include <FatReader.h>
#include <SdReader.h>
#include <avr/pgmspace.h>
#include "WaveUtil.h"
#include "WaveHC.h"
SdReader card; // This object holds the information for the card
FatVolume vol; // This holds the information for the partition on the card
FatReader root; // This holds the information for the filesystem on the card
FatReader f; // This holds the information for the file we're play
WaveHC wave; // This is the only wave (audio) object, since we will only play one at a time
#define DEBOUNCE 5 // button debouncer
//Powercell and Cyclotron using 3 74HC595 Shift Registers. 2 For Powercell and 1 for Cyclotron
int pc_dataPin = 0; //Powercell DS
int pc_latchPin = 1; //Powercell ST_CP
int pc_clockPin = 6; //Powercell SH_CP
int cyc_dataPin = 7; //Cyclotron DS
int cyc_latchPin = 8; //Cyclotron ST_CP
int cyc_clockPin = 9;//Cyclotron SH_CP
int SwitchPin = 13; //PackSwitch
//Gun lightbar
//int LB_dataPin = 1; //Powercell DS
//int LB_latchPin = 6; //Powercell ST_CP
//int LB_clockPin = 7; //Powercell SH_CP
int p=0;
int pp=0;
int c=0;
int L=0;
int N=0;
int intensify = 14;
int val;
int kk=0;
//Define Pack lights
byte dataPOWERCELL;
byte dataPOWERCELL2;
byte dataPOWERCELLOFF;
byte dataPOWERCELL2OFF;
byte dataArrayPOWERCELL[15]={0,0,0,0,0,0,0,1,3,7,15,31,63,127,255}; //Converted binary to Decimal
byte dataArrayPOWERCELL2[15]={7,7,15,31,63,127,255,255,255,255,255,255,255,255,255}; //Converted binary to Decimal
long previousPCMillis = 0; //Powercell
long previousCYCMillis=0; //Cyclotron
long previousLBMillis = 0;
long previousLBonMillis = 0;
long pcinterval = 85;
long cycinterval = 700;
//BUTTONS
byte buttons[] = {14, 15, 16}; //Analog 0, 1, 2
// This handy macro lets us determine how big the array up above is, by checking the size
#define NUMBUTTONS sizeof(buttons)
// we will track if a button is just pressed, just released, or 'pressed' (the current state
volatile byte pressed[NUMBUTTONS], justpressed[NUMBUTTONS], justreleased[NUMBUTTONS];
// this handy function will return the number of bytes currently free in RAM, great for debugging!
int freeRam(void)
{
extern int __bss_end;
extern int *__brkval;
int free_memory;
if((int)__brkval == 0) {
free_memory = ((int)&free_memory) - ((int)&__bss_end);
}
else {
free_memory = ((int)&free_memory) - ((int)__brkval);
}
return free_memory;
}
void sdErrorCheck(void)
{
if (!card.errorCode()) return;
putstring("\n\rSD I/O error: ");
Serial.print(card.errorCode(), HEX);
putstring(", ");
Serial.println(card.errorData(), HEX);
while(1);
}
void setup() {
byte i;
pinMode (pc_dataPin, OUTPUT);
pinMode (pc_clockPin, OUTPUT);
pinMode (pc_latchPin, OUTPUT);
// Set the output pins for the DAC control. This pins are defined in the library
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
// set up serial port
Serial.begin(9600);
putstring_nl("WaveHC with ");
Serial.print(NUMBUTTONS, DEC);
putstring_nl("buttons");
putstring("Free RAM: "); // This can help with debugging, running out of RAM is bad
Serial.println(freeRam()); // if this is under 150 bytes it may spell trouble!
// Make input & enable pull-up resistors on switch pins
for (i=0; i< NUMBUTTONS; i++) {
pinMode(buttons[i], INPUT);
digitalWrite(buttons[i], HIGH);
}
// if (!card.init(true)) { //play with 4 MHz spi if 8MHz isn't working for you
if (!card.init()) { //play with 8 MHz spi (default faster!)
putstring_nl("Card init. failed!"); // Something went wrong, lets print out why
sdErrorCheck();
while(1); // then 'halt' - do nothing!
}
// enable optimize read - some cards may timeout. Disable if you're having problems
card.partialBlockRead(true);
// Now we will look for a FAT partition!
uint8_t part;
for (part = 0; part < 5; part++) { // we have up to 5 slots to look in
if (vol.init(card, part))
break; // we found one, lets bail
}
if (part == 5) { // if we ended up not finding one :(
putstring_nl("No valid FAT partition!");
sdErrorCheck(); // Something went wrong, lets print out why
while(1); // then 'halt' - do nothing!
}
// Lets tell the user about what we found
putstring("Using partition ");
Serial.print(part, DEC);
putstring(", type is FAT");
Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?
// Try to open the root directory
if (!root.openRoot(vol)) {
putstring_nl("Can't open root dir!"); // Something went wrong,
while(1); // then 'halt' - do nothing!
}
// Whew! We got past the tough parts.
putstring_nl("Ready!");
TCCR2A = 0;
TCCR2B = 1<<CS22 | 1<<CS21 | 1<<CS20;
//Timer2 Overflow Interrupt Enable
TIMSK2 |= 1<<TOIE2;
}
SIGNAL(TIMER2_OVF_vect) {
check_switches();
}
void check_switches()
{
static byte previousstate[NUMBUTTONS];
static byte currentstate[NUMBUTTONS];
byte index;
for (index = 0; index < NUMBUTTONS; index++) {
currentstate[index] = digitalRead(buttons[index]); // read the button
if (currentstate[index] == previousstate[index]) {
if ((pressed[index] == LOW) && (currentstate[index] == LOW)) {
// just pressed
justpressed[index] = 1;
}
else if ((pressed[index] == HIGH) && (currentstate[index] == HIGH)) {
// just released
justreleased[index] = 1;
}
pressed[index] = !currentstate[index]; // remember, digital HIGH means NOT pressed
}
//Serial.println(pressed[index], DEC);
previousstate[index] = currentstate[index]; // keep a running tally of the buttons
}
}
void loop() {
//byte i;
unsigned long crntPCMillis = millis();
unsigned long crntCYCMillis = millis();
if (p>13){ //Powercell lights
p=0;
}
if (c>3){ //Cyclotron lights
c=0;
}
if(crntPCMillis - previousPCMillis > pcinterval){
previousPCMillis = crntPCMillis;
p=p+1;
dataPOWERCELL = dataArrayPOWERCELL[p];
dataPOWERCELL2 = dataArrayPOWERCELL2[p];
digitalWrite (pc_latchPin, LOW);
shiftOut (pc_dataPin, pc_clockPin, LSBFIRST, dataPOWERCELL2);
shiftOut (pc_dataPin, pc_clockPin, LSBFIRST, dataPOWERCELL);
digitalWrite (pc_latchPin, HIGH);
}
//if (justpressed[0]) {
// justpressed[0] = 0;
//playfile ("PPOWERUP.WAV");
//}
//else if (justreleased[0]) {
// justreleased[0] = 0;
// playfile ("PACKOFF.WAV");
// }
}
// Plays a full file from beginning to end with no pause.
void playcomplete(char *name) {
// call our helper to find and play this name
playfile(name);
while (wave.isplaying) {
// do nothing while its playing
}
// now its done playing
}
void playfile(char *name) {
// see if the wave object is currently doing something
if (wave.isplaying) {// already playing something, so stop it!
wave.stop(); // stop it
}
// look in the root directory and open the file
if (!f.open(root, name)) {
putstring("Couldn't open file "); Serial.print(name); return;
}
// OK read the file and turn it into a wave object
if (!wave.create(f)) {
putstring_nl("Not a valid WAV"); return;
}
// ok time to play! start playback
wave.play();
}