Sequential blinking of LEDs in OOP

Hello there,

I'm new to Arduino and wanted to try to light LEDs in sequence in Object Oriented Programming.
I believe it is fairly easy in non OOP (functional programming?) but I wanted to learn how to do it this way.
I tried to create a Switch method to turn Off one LED and turn On the next one in the sequence but it didn't work so I did it without the method (in comments in the code below).
So this code works but I wanted to know how to make the Switch method I had in mind, or if it's
just useless and this is good enough.

Thanks in advance :slight_smile:

const int timeBlink = 700;

class Blinker
{
  int ledPin; 
  int ledState; 

  public:
  Blinker(int pin, int state)
  {
    ledPin = pin;
    pinMode(ledPin, OUTPUT);
    ledState = state;
  }

  void turnOn()
  {
    this->ledState = HIGH;
    digitalWrite(this->ledPin, this->ledState);
  }

  void turnOff()
  {
    this->ledState = LOW;
    digitalWrite(this->ledPin, this->ledState);
  }

/*  void Switch(Blinker led_b)
  {
    this->ledState = LOW;
    digitalWrite(this->ledPin, LOW);
    led_b.turnOn();
  }
*/  
  int getLedState()
  {
    return this->ledState;
  }
};


Blinker led1(11, HIGH);
Blinker led2(9, LOW);
Blinker led3(3, LOW);
unsigned long previousMillis = 0;

int state1;
int state2;
//int state3;

void setup() {
  led1.turnOn();
}

void loop() {
  unsigned long currentMillis = millis();
  
  if( currentMillis - previousMillis >= timeBlink){
    state1 = led1.getLedState();
    state2 = led2.getLedState();
    //state3 = led3.getLedState();
    
    if(state1 == HIGH){
      led1.turnOff();
      led2.turnOn();
    }

    else if (state2 == HIGH){
      led2.turnOff();
      led3.turnOn();
    }
    
    else {
      led3.turnOff();
      led1.turnOn();
    }
    previousMillis = currentMillis;
  }
}

I assure you the switch method does work. The code you posted does not use the switch method. Are you looking for someone to change your posted code to use the switch method? Or will you be posting the code from your best efforts at using the switch method, then letting us know what your switch method code is supposed to do and what it does instead, and then allowing others to provide feedback on how to make your switch method work. Oh, and that switch method

is in your mind which I cannot read.

What do you want your Switch method to do?

const int timeBlink = 300;

class Blinker
{
  int ledPin; 
  int ledState; 

  public:
  Blinker(int pin, int state)
  {
    ledPin = pin;
    pinMode(ledPin, OUTPUT);
    ledState = state;
  }

  void turnOn()
  {
    this->ledState = HIGH;
    digitalWrite(this->ledPin, this->ledState);
  }

  void turnOff()
  {
    this->ledState = LOW;
    digitalWrite(this->ledPin, this->ledState);
  }

 void Switch(Blinker led_b)
  {
    this->ledState = LOW;
    digitalWrite(this->ledPin, LOW);
    led_b.turnOn();
  }

  int getLedState()
  {
    return this->ledState;
  }
};


Blinker led1(11, HIGH);
Blinker led2(9, LOW);
Blinker led3(3, LOW);
unsigned long previousMillis = 0;

int state1;
int state2;
//int state3;

void setup() {
  led1.turnOn();
}

void loop() {
  unsigned long currentMillis = millis();
  
  if( currentMillis - previousMillis >= timeBlink){
    state1 = led1.getLedState();
    state2 = led2.getLedState();
    //state3 = led3.getLedState();
    
    if(state1 == HIGH){
      led1.Switch(led2);
    }

    else if (state2 == HIGH){
      led2.Switch(led3);
    }
    
    else {
      led3.Switch(led1);
    }
    previousMillis = currentMillis;
  }
}

I tried like this and what happened is that the 1st led went On then Off, then the 2nd went On then 1st On again. And it stays like with led 1 and 2 On and the 3rd Off.

I explained it right above :

But maybe I was not clear, I want the led 1 to go On then Off, then the 2nd goes On then Off, then the 3rd On then Off, and then the 1st again.
So led1.Switch(led2); is supposed to turn Off the led1 and turn On the led2

Edit : Post with entire code

Your posted code is not complete.

I only changed the loop function, the rest is the same

Your posted code is still not complete.

Let me example.
Here is post my loop() function.

void loop() {}

As you might be able to see the loop() function is not very helpful in showing what's going on.

Now I am going to post the whole code.

/*
   Chappie Weather upgrade/addition
   process wind speed direction and rain fall.
*/
#include <WiFi.h>
#include <PubSubClient.h>
#include "certs.h"
#include "sdkconfig.h"
#include "esp_system.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/event_groups.h"
#include "driver/pcnt.h"
#include <driver/adc.h>
#include <SimpleKalmanFilter.h>
#include <ESP32Time.h>
////
ESP32Time rtc;
WiFiClient wifiClient;
PubSubClient MQTTclient(mqtt_server, mqtt_port, wifiClient);
////
float CalculatedVoltage = 0.0f;
float kph = 0.0f;
float rain  = 0.0f;
/*
   PCNT PCNT_UNIT_0, PCNT_CHANNEL_0 GPIO_NUM_15 = pulse input pin
   PCNT PCNT_UNIT_1, PCNT_CHANNEL_0 GPIO_NUM_4 = pulse input pin
*/
pcnt_unit_t pcnt_unit00 = PCNT_UNIT_0; //pcnt unit 0 channel 0
pcnt_unit_t pcnt_unit10 = PCNT_UNIT_1; //pcnt unit 1 channel 0
//
//
hw_timer_t * timer = NULL;
//
#define evtAnemometer  ( 1 << 0 )
#define evtRainFall    ( 1 << 1 )
#define evtParseMQTT   ( 1 << 2 )
EventGroupHandle_t eg;
#define OneMinuteGroup ( evtAnemometer | evtRainFall )
////
QueueHandle_t xQ_Message; // payload and topic queue of MQTT payload and topic
const int payloadSize = 100;
struct stu_message
{
  char payload [payloadSize] = {'\0'};
  String topic ;
} x_message;
////
SemaphoreHandle_t sema_MQTT_KeepAlive;
SemaphoreHandle_t sema_mqttOK;
SemaphoreHandle_t sema_CalculatedVoltage;
////
int mqttOK = 0; // stores a count value that is used to cause an esp reset
volatile bool TimeSet = false;
////
/*
   A single subject has been subscribed to, the mqtt broker sends out "OK" messages if the client receives an OK message the mqttOK value is set back to zero.
*/
////
void IRAM_ATTR mqttCallback(char* topic, byte * payload, unsigned int length)
{
  memset( x_message.payload, '\0', payloadSize ); // clear payload char buffer
  x_message.topic = ""; //clear topic string buffer
  x_message.topic = topic; //store new topic
    int i = 0; // extract payload
    for ( i; i < length; i++)
    {
      x_message.payload[i] = ((char)payload[i]);
    }
    x_message.payload[i] = '\0';
    xQueueOverwrite( xQ_Message, (void *) &x_message );// send data to queue
} // void mqttCallback(char* topic, byte* payload, unsigned int length)
////
// interrupt service routine for WiFi events put into IRAM
void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
{
  switch (event) {
    case SYSTEM_EVENT_STA_CONNECTED:
      break;
    case SYSTEM_EVENT_STA_DISCONNECTED:
      log_i("Disconnected from WiFi access point");
      break;
    case SYSTEM_EVENT_AP_STADISCONNECTED:
      log_i("WiFi client disconnected");
      break;
    default: break;
  }
} // void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
////
void IRAM_ATTR onTimer()
{
  BaseType_t xHigherPriorityTaskWoken;
  xEventGroupSetBitsFromISR(eg, OneMinuteGroup, &xHigherPriorityTaskWoken);
} // void IRAM_ATTR onTimer()
////
void setup()
{
  eg = xEventGroupCreate(); // get an event group handle
  //  x_message.topic.reserve(300);
  adc1_config_width(ADC_WIDTH_12Bit);
  adc1_config_channel_atten(ADC1_CHANNEL_6, ADC_ATTEN_DB_11);// using GPIO 34 wind direction
  adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11);// using GPIO 39 current
  adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11);// using GPIO 36 battery volts

  // hardware timer 4 set for one minute alarm
  timer = timerBegin( 3, 80, true );
  timerAttachInterrupt( timer, &onTimer, true );
  timerAlarmWrite(timer, 60000000, true);
  timerAlarmEnable(timer);
  /* Initialize PCNT's counter */
  int PCNT_H_LIM_VAL         = 3000;
  int PCNT_L_LIM_VAL         = -10;
  // 1st PCNT counter
  pcnt_config_t pcnt_config  = {};
  pcnt_config.pulse_gpio_num = GPIO_NUM_15;// Set PCNT input signal and control GPIOs
  pcnt_config.ctrl_gpio_num  = PCNT_PIN_NOT_USED;
  pcnt_config.channel        = PCNT_CHANNEL_0;
  pcnt_config.unit           = PCNT_UNIT_0;
  // What to do on the positive / negative edge of pulse input?
  pcnt_config.pos_mode       = PCNT_COUNT_INC;   // Count up on the positive edge
  pcnt_config.neg_mode       = PCNT_COUNT_DIS;   // Count down disable
  // What to do when control input is low or high?
  pcnt_config.lctrl_mode     = PCNT_MODE_KEEP; // do not count if low reverse
  pcnt_config.hctrl_mode     = PCNT_MODE_KEEP;    // Keep the primary counter mode if high
  // Set the maximum and minimum limit values to watch
  pcnt_config.counter_h_lim  = PCNT_H_LIM_VAL;
  pcnt_config.counter_l_lim  = PCNT_L_LIM_VAL;
  pcnt_unit_config(&pcnt_config); // Initialize PCNT unit
  pcnt_set_filter_value( PCNT_UNIT_0, 1); //Configure and enable the input filter
  pcnt_filter_enable( PCNT_UNIT_0 );
  pcnt_counter_pause( PCNT_UNIT_0 );
  pcnt_counter_clear( PCNT_UNIT_0 );
  pcnt_counter_resume( PCNT_UNIT_0); // start the show
  // setup 2nd PCNT
  pcnt_config = {};
  pcnt_config.pulse_gpio_num = GPIO_NUM_4;
  pcnt_config.ctrl_gpio_num  = PCNT_PIN_NOT_USED;
  pcnt_config.channel        = PCNT_CHANNEL_0;
  pcnt_config.unit           = PCNT_UNIT_1;
  pcnt_config.pos_mode       = PCNT_COUNT_INC;
  pcnt_config.neg_mode       = PCNT_COUNT_DIS;
  pcnt_config.lctrl_mode     = PCNT_MODE_KEEP;
  pcnt_config.hctrl_mode     = PCNT_MODE_KEEP;
  pcnt_config.counter_h_lim  = PCNT_H_LIM_VAL;
  pcnt_config.counter_l_lim  = PCNT_L_LIM_VAL;
  pcnt_unit_config(&pcnt_config);
  //pcnt_set_filter_value( PCNT_UNIT_1, 1 );
  //pcnt_filter_enable  ( PCNT_UNIT_1 );
  pcnt_counter_pause  ( PCNT_UNIT_1 );
  pcnt_counter_clear  ( PCNT_UNIT_1 );
  pcnt_counter_resume ( PCNT_UNIT_1 );
  //
  xQ_Message = xQueueCreate( 1, sizeof(stu_message) );
  //
  sema_CalculatedVoltage = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_CalculatedVoltage );
  sema_mqttOK = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_mqttOK );
  sema_MQTT_KeepAlive = xSemaphoreCreateBinary();
  ///
  xTaskCreatePinnedToCore( MQTTkeepalive, "MQTTkeepalive", 15000, NULL, 5, NULL, 1 );
  xTaskCreatePinnedToCore( fparseMQTT, "fparseMQTT", 10000, NULL, 5, NULL, 1 ); // assign all to core 1, WiFi in use.
  xTaskCreatePinnedToCore( fReadBattery, "fReadBattery", 4000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fReadCurrent, "fReadCurrent", 4000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fWindDirection, "fWindDirection", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fAnemometer, "fAnemometer", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fRainFall, "fRainFall", 10000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fmqttWatchDog, "fmqttWatchDog", 3000, NULL, 3, NULL, 1 ); // assign all to core 1
} //void setup()
////


void fWindDirection( void *pvParameters )
// read the wind direction sensor, return heading in degrees
{
  float adcValue = 0.0f;
  uint64_t TimePastKalman  = esp_timer_get_time();
  SimpleKalmanFilter KF_ADC( 1.0f, 1.0f, .01f );
  float high = 0.0f;
  float low = 2000.0f;
  float ADscale = 3.3f / 4096.0f;
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 100; //delay for mS
  int count = 0;
  String windDirection;
  windDirection.reserve(20);
  String MQTTinfo = "";
  MQTTinfo.reserve( 150 );
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  for (;;)
  {
    windDirection = "";
    adcValue = float( adc1_get_raw(ADC1_CHANNEL_6) ); //take a raw ADC reading
    KF_ADC.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue = KF_ADC.updateEstimate( adcValue ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    adcValue = adcValue * ADscale;
    log_i( "                       adc %f", adcValue );
    if ( (adcValue >= 0.0f) & (adcValue <= .25f )  )
    {
     // log_i( " n" );
      windDirection.concat( "N" );
    }
    //
//    if ( (adcValue >= .25f) & adcValue <= .5f )
//    {
//      log_i( " nne" );
//      windDirection.concat( "NNE");
//    }
    //
    if ( (adcValue > .25f) & (adcValue <= .6f ) )
    {
    //  log_i( " e" );
      windDirection.concat( "E" );
    }
//    if ( (adcValue > 1.0f) & (adcValue < 1.75f) )
//    {
//      log_i( " sse" );
//      windDirection.concat( "S-SE");
//    }
//    //
//        if ( (adcValue >= 1.75f) & (adcValue < 2.2f) )
//    {
//      log_i( " nnw" );
//      windDirection.concat( "N-NW" );
//    }
    //
    if ( (adcValue > 2.0f) & ( adcValue < 3.3f) )
    {
   //   log_i( " s" );
      windDirection.concat( "S");
    }
    //
//    if ( (adcValue > 2.6f) & (adcValue < 3.0f ) )
//    {
//      log_i( " ssw" );
//      windDirection.concat( "S-SW" );
//    }
    if ( (adcValue >= 1.7f) & (adcValue < 2.0f ) )
    {
     // log_i( " w" );
      windDirection.concat( "W" );
    }
    if( count >= 30 )
    {
      MQTTinfo.concat( String(kph, 2) );
      MQTTinfo.concat( ",");
      MQTTinfo.concat( windDirection );
      MQTTinfo.concat( ",");
      MQTTinfo.concat( String(rain,2) );
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
      MQTTclient.publish( topicWSWDRF, MQTTinfo.c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
      count = 0;
    }
    count++;
    MQTTinfo = "";
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete ( NULL );
}
// read rainfall
void fRainFall( void *pvParemeters )
{
  int16_t count = 0;
  pcnt_counter_pause( PCNT_UNIT_1 );
  pcnt_counter_clear( PCNT_UNIT_1 );
  pcnt_counter_resume( PCNT_UNIT_1 );
  for  (;; )
  {
    xEventGroupWaitBits (eg, evtRainFall, pdTRUE, pdTRUE, portMAX_DELAY);
    pcnt_counter_pause( PCNT_UNIT_1 );
    pcnt_get_counter_value( PCNT_UNIT_1, &count );
    pcnt_counter_clear( PCNT_UNIT_1 );
    pcnt_counter_resume( PCNT_UNIT_1 );
    if ( count != 0 )
    {
      // 0.2794mm of rain per click clear clicks at mid night
      rain = 0.2794f * (float)count;
      log_i( "count %d, rain rain = %f mm", count, rain );
    }
  }
  vTaskDelete ( NULL );
}
////
void fAnemometer( void *pvParameters )
{
  int16_t count = 0;
  pcnt_counter_clear(PCNT_UNIT_0);
  pcnt_counter_resume(PCNT_UNIT_0);
  for (;;)
  {
    xEventGroupWaitBits (eg, evtAnemometer, pdTRUE, pdTRUE, portMAX_DELAY);
    pcnt_counter_pause( PCNT_UNIT_0 );
    pcnt_get_counter_value( PCNT_UNIT_0, &count); //int16_t *count
    // A wind speed of 2.4km/h causes the switch to close once per second
    kph = 2.4 * ((float)count / 60.0f);
    //if ( count != 0 )
    //{
      log_i( "count %d, wind Kph = %f", count, kph );
    //}
    count = 0;
    pcnt_counter_clear( PCNT_UNIT_0 );
    pcnt_counter_resume( PCNT_UNIT_0 );
  }
  vTaskDelete ( NULL );
}
//////
void fmqttWatchDog( void * paramater )
{
  int UpdateImeTrigger = 86400; //seconds in a day
  int UpdateTimeInterval = 86300; // 1st time update in 100 counts
  int maxNonMQTTresponse = 60;
  for (;;)
  {
    vTaskDelay( 1000 );
    if ( mqttOK >= maxNonMQTTresponse )
    {
      ESP.restart();
    }
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
    mqttOK++;
    xSemaphoreGive( sema_mqttOK );
    UpdateTimeInterval++; // trigger new time get
    if ( UpdateTimeInterval >= UpdateImeTrigger )
    {
      TimeSet = false; // sets doneTime to false to get an updated time after a days count of seconds
      UpdateTimeInterval = 0;
    }
  }
  vTaskDelete( NULL );
}
//////
void fparseMQTT( void *pvParameters )
{
  struct stu_message px_message;
  for (;;)
  {
    if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    {
      // parse the time from the OK message and update MCU time
      if ( String(px_message.topic) == topicOK )
      {
        if ( !TimeSet)
        {
          String temp = "";
          temp =  px_message.payload[0];
          temp += px_message.payload[1];
          temp += px_message.payload[2];
          temp += px_message.payload[3];
          int year =  temp.toInt();
          temp = "";
          temp =  px_message.payload[5];
          temp += px_message.payload[6];
          int month =  temp.toInt();
          temp =  "";
          temp =  px_message.payload[8];
          temp += px_message.payload[9];
          int day =  temp.toInt();
          temp = "";
          temp = px_message.payload[11];
          temp += px_message.payload[12];
          int hour =  temp.toInt();
          temp = "";
          temp = px_message.payload[14];
          temp += px_message.payload[15];
          int min =  temp.toInt();
          rtc.setTime( 0, min, hour, day, month, year );
          log_i( "rtc  %s ", rtc.getTime() );
          TimeSet = true;
        }
      }
      //
    } //if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
    mqttOK = 0;
    xSemaphoreGive( sema_mqttOK );
  }
} // void fparseMQTT( void *pvParameters )
//////
void fReadCurrent( void * parameter )
{
  float ADbits = 4096.0f;
  float ref_voltage = 3.3f;
  float offSET = .0f;
  uint64_t TimePastKalman  = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  SimpleKalmanFilter KF_I( 1.0f, 1.0f, .01f );
  float mA = 0.0f;
  int   printCount = 0;
  const float mVperAmp = 100.0f;
  float adcValue = 0;
  float Voltage = 0;
  float Power = 0.0;
  String powerInfo = "";
  powerInfo.reserve( 150 );
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 1000; //delay for mS
  for (;;)
  {
    adc1_get_raw(ADC1_CHANNEL_3); // read once discard reading
    adcValue = ( (float)adc1_get_raw(ADC1_CHANNEL_3) );
    Voltage = ( (adcValue * ref_voltage) / ADbits ) + offSET; // Gets you mV
    mA = Voltage / mVperAmp; // get amps
    KF_I.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    mA = KF_I.updateEstimate( mA ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    printCount++;
    if ( printCount == 60 )
    {
      xSemaphoreTake( sema_CalculatedVoltage, portMAX_DELAY);
      Power = CalculatedVoltage * mA;
      log_i( "Voltage=%f mA=%f Power=%f", CalculatedVoltage, mA, Power );
      printCount = 0;
      powerInfo.concat( String(CalculatedVoltage, 2) );
      xSemaphoreGive( sema_CalculatedVoltage );
      powerInfo.concat( ",");
      powerInfo.concat( String(mA, 2) );
      powerInfo.concat( ",");
      powerInfo.concat( String(Power, 4) );
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
      MQTTclient.publish( topicPower, powerInfo.c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
      powerInfo = "";
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete( NULL );
} //void fReadCurrent( void * parameter )
////
void fReadBattery( void * parameter )
{
  //float ADbits = 4096.0f;
  //float ref_voltage = 3.3f;
  float ADscale = 3.3f / 4096.0f;
  float adcValue = 0.0f;
  float offSET = 0.0f;
  const float r1 = 50500.0f; // R1 in ohm, 50K
  const float r2 = 10000.0f; // R2 in ohm, 10k potentiometer
  //float Vscale = (r1+r2)/r2;
  float Vbatt = 0.0f;
  int printCount = 0;
  float vRefScale = (3.3f / 4096.0f) * ((r1 + r2) / r2);
  uint64_t TimePastKalman  = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  SimpleKalmanFilter KF_ADC_b( 1.0f, 1.0f, .01f );
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 1000; //delay for mS
  for (;;)
  {
    adc1_get_raw(ADC1_CHANNEL_0); //read and discard
    adcValue = float( adc1_get_raw(ADC1_CHANNEL_0) ); //take a raw ADC reading
    KF_ADC_b.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue = KF_ADC_b.updateEstimate( adcValue ); // apply simple Kalman filter
    Vbatt = adcValue * vRefScale;
    xSemaphoreTake( sema_CalculatedVoltage, portMAX_DELAY );
    CalculatedVoltage = Vbatt;
    xSemaphoreGive( sema_CalculatedVoltage );
//        printCount++;
//        if ( printCount == 3 )
//        {
//        log_i( "Vbatt %f", Vbatt );
//        printCount = 0;
//        }
    TimePastKalman = esp_timer_get_time(); // time of update complete
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    //log_i( "fReadBattery %d",  uxTaskGetStackHighWaterMark( NULL ) );
  }
  vTaskDelete( NULL );
}
////
void MQTTkeepalive( void *pvParameters )
{
  sema_MQTT_KeepAlive   = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_MQTT_KeepAlive ); // found keep alive can mess with a publish, stop keep alive during publish
  // setting must be set before a mqtt connection is made
  MQTTclient.setKeepAlive( 90 ); // setting keep alive to 90 seconds makes for a very reliable connection, must be set before the 1st connection is made.
  for (;;)
  {
    //check for a is-connected and if the WiFi 'thinks' its connected, found checking on both is more realible than just a single check
    if ( (wifiClient.connected()) && (WiFi.status() == WL_CONNECTED) )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.loop();
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
    else {
      log_i( "MQTT keep alive found MQTT status %s WiFi status %s", String(wifiClient.connected()), String(WiFi.status()) );
      if ( !(wifiClient.connected()) || !(WiFi.status() == WL_CONNECTED) )
      {
        connectToWiFi();
      }
      connectToMQTT();
    }
    vTaskDelay( 250 ); //task runs approx every 250 mS
  }
  vTaskDelete ( NULL );
}
////
void connectToWiFi()
{
  int TryCount = 0;
  while ( WiFi.status() != WL_CONNECTED )
  {
    TryCount++;
    WiFi.disconnect();
    WiFi.begin( SSID, PASSWORD );
    vTaskDelay( 4000 );
    if ( TryCount == 10 )
    {
      ESP.restart();
    }
  }
  WiFi.onEvent( WiFiEvent );
} // void connectToWiFi()
////
void connectToMQTT()
{
  MQTTclient.setKeepAlive( 90 ); // needs be made before connecting
  byte mac[5];
  WiFi.macAddress(mac);
  String clientID = String(mac[0]) + String(mac[4]) ; // use mac address to create clientID
  while ( !MQTTclient.connected() )
  {
    // boolean connect(const char* id, const char* user, const char* pass, const char* willTopic, uint8_t willQos, boolean willRetain, const char* willMessage);
    MQTTclient.connect( clientID.c_str(), mqtt_username, mqtt_password, NULL , 1, true, NULL );
    vTaskDelay( 250 );
  }
  MQTTclient.setCallback( mqttCallback );
  MQTTclient.subscribe( topicOK );
} // void connectToMQTT()
////
void loop() {}

Now you can see the what not of the thngs being done.

Why is this commented out?

Because I used it in the beginning but then I realized I don't need it so I commented it out.
I should have deleted it

I don't understand what you mean, I posted my entire code and it worked without the Switch method (only the turnOn and turnOff ones).
So I assumed that just modifying this part is enough.
I don't see what I need to add

Not in a single post. We want to make sure there are no cut and paste errors. It also keeps everyone "on the same page" conceptually.

Sorry to had bothered you good luck with figuring out the issue.

Yes I realized that after my post, I edited it with the entire code and the switch method used

Upload it again and verify. It should work, at a glance. Maybe your sketch upload failed or you uploaded a different sketch by mistake.

Also, you have a boat load of unnecessary 'this' pointer references.

If you want to go full OOP, here is one way to have the Blinker class keep track of the blinkers and the order in which they were declared. Then the Switch function can do ALL of the work:

const int timeBlink = 300;

class Blinker
{
    int ledPin;
    int ledState;
    static Blinker *lastBlinker;
    Blinker *previous;


  public:
    Blinker(int pin)
    {
      ledPin = pin;
      pinMode(ledPin, OUTPUT);
      setLedState(LOW);
      previous = lastBlinker;
      lastBlinker = this;
    }

    void turnOn()
    {
      setLedState(HIGH);
    }

    void turnOff()
    {
      setLedState(LOW);
    }

    static void Switch()
    {
      int lastBlinkerOldState = 0;

      if (lastBlinker)
        lastBlinkerOldState = lastBlinker->getLedState();

      Blinker *prev = lastBlinker;

      while (prev)
      {
        if (prev->previous)
        {
          // Has a preceeding Blinker so move that status here
          prev->setLedState(prev->previous->getLedState());
        }
        else
        {
          // No preceeding Blinker so use the state of the last one
          prev->setLedState(lastBlinkerOldState);
        }
        prev = prev->previous;
      }
    }

    int getLedState()
    {
      return ledState;
    }

    void setLedState(int state)
    {
      ledState = state;
      digitalWrite(ledPin, state);
    }
};

Blinker * Blinker::lastBlinker = NULL;

Blinker led1(11);
Blinker led2(9);
Blinker led3(3);

unsigned long previousMillis = 0;


void setup()
{
  led1.turnOn();
}

void loop()
{
  unsigned long currentMillis = millis();

  if (currentMillis - previousMillis >= timeBlink)
  {
    previousMillis = currentMillis;
    Blinker::Switch();
  }
}

Also, I see that you dropped your camelCase convention when you found out that 'switch' is a keyword. Really, keyword variants are not good choices for identifiers because of the possibility of human error, or confusion. Better, 'ledSwitch' or something...

Thank you so much

Yes you're exactly right, I didn't know switch was a keyword and it bugged me at first.
I'll keep that in mind, thanks

This topic was automatically closed 120 days after the last reply. New replies are no longer allowed.