Klar. Hier mein kombinierter Sketch. Mein Ziel ist es ca. 1x pro Sekunde alle drei Werte im json Format zu bekommen (A1, A2, D2). Aktuell gehen ab und zu die { Klammern verloren. Das kann ich mir nicht erklären. Wenn ich zu viele delays (mit und ohne millis funktion) einbaue, dann bekomme ich zu wenige Ergebnisse. Das Entfernen von den Delays hat jedenfalls keine Besserung gebracht. Anbei der Screenshot mit dem fehlerhaften seriellen Output.
/*
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev
Measure the liquid/water flow rate using this code.
Connect Vcc and Gnd of sensor to arduino, and the
signal line to arduino digital pin 2.
*/
#include "EmonLib.h"
// Include Emon Library
EnergyMonitor emon1;
byte statusLed = 13;
byte sensorInterrupt = 0; // 0 = digital pin 2
byte sensorPin = 2;
// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;
volatile byte pulseCount;
float flowRate;
unsigned int flowMilliLitres;
unsigned long oldTime;
String zeile;
void setup()
{
// Initialize a serial connection for reporting values to the host
Serial.begin(9600);
emon1.current(1, 20); // Current: input pin, calibration
// Set up the status LED line as an output
pinMode(statusLed, OUTPUT);
digitalWrite(statusLed, HIGH); // We have an active-low LED attached
pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);
pulseCount = 0;
flowRate = 0.0;
flowMilliLitres = 0;
oldTime = 0;
// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH
// state to LOW state)
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}
/**
* Main program loop
*/
void loop()
{
if((millis() - oldTime) > 1000) // Only process counters once per second
{
// Disable the interrupt while calculating flow rate and sending the value to
// the host
detachInterrupt(sensorInterrupt);
// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
// Note the time this processing pass was executed. Note that because we've
// disabled interrupts the millis() function won't actually be incrementing right
// at this point, but it will still return the value it was set to just before
// interrupts went away.
oldTime = millis();
// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres = (flowRate / 60) * 1000;
unsigned int frac;
zeile = "{\"Input\":\"D2\", \"value\":" + String(flowRate) + "}";
Serial.println(zeile);
// Reset the pulse counter so we can start incrementing again
pulseCount = 0;
// Enable the interrupt again now that we've finished sending output
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
// read the input on analog pin 0:
float sensorValue = analogRead(A0)* (5.0 / 1023.0);
// print out the value you read:
zeile = "{\"Input\":\"A0\", \"value\":" + String(sensorValue) + "}";
Serial.println(zeile);
delay(500); // delay in between reads for stability
float Irms = emon1.calcIrms(1480); // Calculate Irms only
zeile = "{\"Input\":\"A1\", \"value\":" + String(Irms) + "}";
Serial.println(zeile);
delay(500); // delay in between reads for stability
}
}
/*
Insterrupt Service Routine
*/
void pulseCounter()
{
// Increment the pulse counter
pulseCount++;
}
