Sketches kombinieren (3 Sensorabfragen)

Ich finde das Verhalten vom Arduino nicht ganz nachvollziebar. Nach mehreren Versuchen klappt es mit Delay (50) zwischen den analogen Sensoren.

/*
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev

Measure the liquid/water flow rate using this code. 
Connect Vcc and Gnd of sensor to arduino, and the 
signal line to arduino digital pin 2.
 
 */
#include "EmonLib.h"
// Include Emon Library
EnergyMonitor emon1;

byte statusLed       = 13;
byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;

unsigned long oldTime;
String zeile;

void setup()
{
  
  // Initialize a serial connection for reporting values to the host
  Serial.begin(9600);
  emon1.current(1, 20);             // Current: input pin, calibration 
  // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

/**
 * Main program loop
 */
void loop()
{
   
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
      
    unsigned int frac;
    
    zeile = "{\"Input\":\"D2\", \"value\":" + String(flowRate) + "}";
    Serial.println(zeile);

    
    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);

    // read the input on analog pin 0:
  float sensorValue = analogRead(A0)* (5.0 / 1023.0);
// print out the value you read:
  zeile = "{\"Input\":\"A0\", \"value\":" + String(sensorValue) + "}";
  Serial.println(zeile);

delay(50);        // delay in between reads for stability

  float Irms = emon1.calcIrms(1480);  // Calculate Irms only
  zeile = "{\"Input\":\"A1\", \"value\":" + String(Irms) + "}";
  Serial.println(zeile);

  }
}

/*
Insterrupt Service Routine
 */
void pulseCounter()
{
  // Increment the pulse counter
  pulseCount++;
}