Smoke detector for fish smoker?

Here I use a particle detector to do a thing

#include <WiFi.h>
#include <PubSubClient.h>
#include "certs.h" // include the connection infor for WiFi and MQTT
#include "sdkconfig.h" // used for log printing
#include "esp_system.h"
#include "freertos/FreeRTOS.h" //freeRTOS items to be used
#include "freertos/task.h"
#include <SPI.h>
#include <Adafruit_Sensor.h>
#include "Adafruit_BME680.h"
#include <Adafruit_GFX.h>    // Core graphics library
#include <Adafruit_ST7789.h> // Hardware-specific library for ST7789
#include <driver/adc.h>
#include "esp32-hal-ledc.h"
//#include "LinearRegression.h"
////
Adafruit_BME680 bme( GPIO_NUM_5 ); // use hardware SPI, set GPIO pin to use
//Adafruit_ST7789 tft = Adafruit_ST7789( TFT_CS     , TFT_DC    , TFT_MOSI   , TFT_SCLK   , TFT_RST     );
Adafruit_ST7789 tft   = Adafruit_ST7789( GPIO_NUM_15, GPIO_NUM_0, GPIO_NUM_13, GPIO_NUM_14, GPIO_NUM_22 );
WiFiClient   wifiClient; // do the WiFi instantiation thing
PubSubClient MQTTclient( mqtt_server, mqtt_port, wifiClient ); //do the MQTT instantiation thing
LinearRegression lr;
//////
#define evtDoParticleRead     ( 1 << 0 ) // declare an event
#define evtWaitForBME         ( 1 << 1 )
#define evtParseMQTT          ( 1 << 3 )
EventGroupHandle_t eg; // variable for the event group handle
//////
QueueHandle_t xQ_eData; // environmental data to be displayed on the screen
QueueHandle_t xQ_lrData; // linear regression data
struct stu_eData
{
  float Temperature = 0.0f;
  float Pressure    = 0.0f;
  float Humidity    = 0.0f;
  float IAQ         = 0.0f;
  float RM0         = 0.0f;
  float PM2         = 0.0f;
} x_eData; // environmental data
QueueHandle_t xQ_Message; // payload and topic queue of MQTT payload and topic
const int payloadSize = 100;
struct stu_message
{
  char payload [payloadSize] = {'\0'};
  String topic ;
} x_message;
////
QueueHandle_t xQ_pMessage;
////
const float oGasResistanceBaseLine = 149598.0f;
int mqttOK = 0;
//////
esp_timer_handle_t oneshot_timer; //veriable to store the hardware timer handle
//////
SemaphoreHandle_t sema_MQTT_KeepAlive;
SemaphoreHandle_t sema_PublishPM;
SemaphoreHandle_t sema_mqttOK;
//////
// interrupt service routine for WiFi events put into IRAM
void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
{
  switch (event) {
    case SYSTEM_EVENT_STA_CONNECTED:
      log_i("Connected to WiFi access point");
      break;
    case SYSTEM_EVENT_STA_DISCONNECTED:
      log_i("Disconnected from WiFi access point");
      break;
    case SYSTEM_EVENT_AP_STADISCONNECTED:
      log_i("WiFi client disconnected");
      break;
    default: break;
  }
} // void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
//////
void IRAM_ATTR oneshot_timer_callback( void* arg )
{
  BaseType_t xHigherPriorityTaskWoken;
  xEventGroupSetBitsFromISR( eg, evtDoParticleRead, &xHigherPriorityTaskWoken ); //freeRTOS event trigger made for ISR's
} //void IRAM_ATTR oneshot_timer_callback( void* arg )
//////
void IRAM_ATTR mqttCallback(char* topic, byte * payload, unsigned int length)
{
  memset( x_message.payload, '\0', payloadSize ); // clear payload char buffer
  x_message.topic = ""; //clear topic string buffer
  x_message.topic = topic; //store new topic
  int i = 0; // extract payload
  for ( i; i < length; i++)
  {
    x_message.payload[i] = ((char)payload[i]);
  }
  x_message.payload[i] = '\0';
  xQueueOverwrite( xQ_Message, (void *) &x_message );// send data to queue
} // void mqttCallback(char* topic, byte* payload, unsigned int length)
////
void setup()
{
  x_message.topic.reserve( payloadSize );
  //
  xQ_Message  = xQueueCreate( 1, sizeof(stu_message) );
  xQ_eData    = xQueueCreate( 1, sizeof(stu_eData) ); // sends a queue copy of the structure
  xQ_lrData   = xQueueCreate( 1, sizeof(float) );
  //String x = "";
  //x.reserve(500);
  //xQ_pMessage = xQueueCreate( 1, sizeof(x) ); //set size of string queue to a string of 500 string characters.
  //
  sema_PublishPM = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_PublishPM );
  sema_mqttOK    =  xSemaphoreCreateBinary();
  xSemaphoreGive( sema_mqttOK );
  ledcSetup( 4, 12000, 8 ); // ledc: 4  => Group: 0, Channel: 2, Timer: 1, led frequency, resolution  bits // blue led
  ledcAttachPin( GPIO_NUM_12, 4 );   // gpio number and channel
  ledcWrite( 4, 0 ); // write to channel number 4
  //
  eg = xEventGroupCreate(); // get an event group handle
  //
  gpio_config_t io_cfg = {}; // initialize the gpio configuration structure
  io_cfg.mode = GPIO_MODE_OUTPUT; // set gpio mode
  io_cfg.pin_bit_mask = ( (1ULL << GPIO_NUM_4) ); //bit mask of the pins to set
  gpio_config(&io_cfg); // configure the gpio based upon the parameters as set in the configuration structure
  gpio_set_level( GPIO_NUM_4, LOW); // set air particle sensor trigger pin to LOW
  // set up A:D channels, refer: https://dl.espressif.com/doc/esp-idf/latest/api-reference/peripherals/adc.html
  adc1_config_width(ADC_WIDTH_12Bit);
  adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11);// using GPIO 36
  // https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_timer.html?highlight=hardware%20timer High Resoultion Timer API
  esp_timer_create_args_t oneshot_timer_args = {}; // initialize High Resoulition Timer (HRT) configuration structure
  oneshot_timer_args.callback = &oneshot_timer_callback; // configure for callback, name of callback function
  esp_timer_create( &oneshot_timer_args, &oneshot_timer ); // assign configuration to the HRT, receive timer handle
  //
  xTaskCreatePinnedToCore( fparseMQTT, "fparseMQTT", 7000,  NULL, 5, NULL, 1 );
  xTaskCreatePinnedToCore( MQTTkeepalive, "MQTTkeepalive", 15000, NULL, 6, NULL, 1 );
  xTaskCreatePinnedToCore( DoTheBME680Thing, "DoTheBME280Thing", 20000, NULL, 5, NULL, 1);
  xTaskCreatePinnedToCore( fDoParticleDetector, "fDoParticleDetector", 6000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fmqttWatchDog, "fmqttWatchDog", 3000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fDoTheDisplayThing, "fDoTheDisplayThing", 22000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fDoTrends, "fDoTrends", 5000, NULL, 3, NULL, 1 );
  //xTaskCreatePinnedToCore( fSendMQTTpressure, "fSendMQTTpressure", 3000, NULL, 3, NULL, 1 );
} //void setup()
////
//void fSendMQTTpressure( void *pvParameters )
//{
//  //struct stu_pressureMessage px_message;
//  String apInfo = "";
//  apInfo.reserve( 150 );
//  for ( ;; )
//  {
//    if ( xQueueReceive(xQ_pMessage, &apInfo, portMAX_DELAY) == pdTRUE )
//    {
//      if ( MQTTclient.connected() )
//      {
//        xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
//        MQTTclient.publish( topicPressureInfo, apInfo.c_str() );
//        vTaskDelay( 1 );
//        xSemaphoreGive( sema_MQTT_KeepAlive );
//      } else {
//        log_i( "fSendMQTTpressure not connected" );
//      }
//      apInfo = "";
//    }
//  } // for ( ;; )
//  vTaskDelete( NULL );
//} //void fSendMQTTpresure( void *pvParameters )
//////
void fparseMQTT( void *pvParameters )
{
  struct stu_message px_message;
  for (;;)
  {
    if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    {
      xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
      mqttOK = 0;
      xSemaphoreGive( sema_mqttOK );
      if ( px_message.topic == topicRemainingMoisture_0 )
      {
        x_eData.RM0  = String(px_message.payload).toFloat();
      }
    } //if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
  } //for(;;)
  vTaskDelete( NULL );
} // void fparseMQTT( void *pvParameters )
////
void fDoTheDisplayThing( void * parameter )
{
  tft.init( 240, 320 ); // Init ST7789 320x240
  tft.setRotation( 3 );
  tft.setTextSize( 3 );
  tft.fillScreen( ST77XX_BLACK );
  tft.setTextWrap( false );
  struct stu_eData px_eData;
  int OneTwoThree = 0;
  int countUpDown = 255;
  ledcWrite( 4, countUpDown ); //backlight set
  int dimDelaytime = 7;
  for (;;)
  {
    if ( xQueueReceive(xQ_eData, &px_eData, portMAX_DELAY) == pdTRUE )
    {
      for ( countUpDown; countUpDown-- > 0; )
      {
        ledcWrite( 4, countUpDown ); // write to channel number 4, dim backlight
        vTaskDelay( dimDelaytime );
      }
      tft.fillScreen(ST77XX_BLACK);
      tft.setCursor( 0, 0 );
      OneTwoThree++;
      if ( OneTwoThree == 1 )
      {
        tft.setTextColor( ST77XX_RED );
      }
      if ( OneTwoThree == 2 )
      {
        tft.setTextColor( ST77XX_WHITE );
      }
      if ( OneTwoThree == 3 )
      {
        tft.setTextColor( ST77XX_BLUE );
        OneTwoThree = 0;
      }
      tft.println( "Temp " + String(px_eData.Temperature) + "F" );
      tft.setCursor( 0, 30 );
      tft.println( "Hum  " + String(px_eData.Humidity) + "%" );
      tft.setCursor( 0, 60 );
      tft.println( "Pres " + String(px_eData.Pressure) + "mmHg" );
      tft.setCursor( 0, 90 );
      tft.println( "AQI  " + String(px_eData.IAQ) + "%" );
      tft.setCursor( 0, 120 );
      tft.println( "RM0  " + String(px_eData.RM0) + "%" );
      tft.setCursor( 0, 150 );
      tft.println( "PM2  " + String(px_eData.PM2) + "ug/m3" );
      tft.setCursor( 0, 180 );
      if ( px_eData.PM2 <= 35.0f )
      {
        //tft.setTextColor( ST77XX_GREEN );
        tft.println( "PM2 is Excellent" );
      }
      if ( (px_eData.PM2 > 35.0f) && px_eData.PM2 <= 75.0f )
      {
        tft.println( "PM2 is Average" );
      }
      if ( (px_eData.PM2 > 75.0f) && px_eData.PM2 <= 115.0f )
      {
        tft.println( "PM2 is Light" );
      }
      if ( (px_eData.PM2 > 115.0f) && px_eData.PM2 <= 150.0f )
      {
        tft.println( "PM2 is Moderate" );
      }
      if ( (px_eData.PM2 > 150.0f) && px_eData.PM2 <= 250.0f )
      {
        tft.println( "PM2 is Heavy" );
      }
      if ( (px_eData.PM2 > 250.0f) )
      {
        tft.println( "PM2 is Serious" );
      }
      //brighten blacklight level
      vTaskDelay( 400 ); // wait for screen update to be done
      for ( countUpDown; countUpDown <= 255; countUpDown++ )
      {
        ledcWrite( 4, countUpDown ); // write to channel number 4
        vTaskDelay( dimDelaytime  );
      }
      //log_i( "DoTheBME280Thing high watermark % d",  uxTaskGetStackHighWaterMark( NULL ) );
    } //if ( xQueueReceive(xQ_eData, &px_eData, portMAX_DELAY) == pdTRUE )
  } //for (;;)
  vTaskDelete( NULL );
} //void fDoTheDisplayTHing( void * parameter )
////
void fmqttWatchDog( void * paramater )
{
  int maxNonMQTTresponse = 5;
  for (;;)
  {
    vTaskDelay( 1000 );
    if ( mqttOK >= maxNonMQTTresponse )
    {
      ESP.restart();
    }
  }
  vTaskDelete( NULL );
}
////
float fCalulate_IAQ_Index( int gasResistance, float Humidity)
{
  float hum_baseline = 40.0f;
  float hum_weighting = 0.25f;
  float gas_offset = 0.0f;
  float hum_offset = 0.0f;
  float hum_score = 0.0f;
  float gas_score = 0.0f;
  gas_offset = oGasResistanceBaseLine - float( gasResistance );
  hum_offset = float( Humidity ) - hum_baseline;
  // calculate hum_score as distance from hum_baseline
  if ( hum_offset > 0.0f )
  {
    hum_score = 100.0f - hum_baseline - hum_offset;
    hum_score /= ( 100.0f - hum_baseline );
    hum_score *= ( hum_weighting * 100.0f );
  } else {
    hum_score = hum_baseline + hum_offset;
    hum_score /= hum_baseline;
    hum_score *= ( 100.0f - (hum_weighting * 100.0f) );
  }
  //calculate gas score as distance from baseline
  if ( gas_offset > 0.0f )
  {
    gas_score = float( gasResistance ) / oGasResistanceBaseLine;
    gas_score *= ( 100.0f - (hum_weighting * 100.0f ) );
  } else {
    gas_score = 100.0f - ( hum_weighting * 100.0f );
  }
  return ( hum_score + gas_score );
} //void fCalulate_IAQ_Index( int gasResistance, float Humidity):
////
void fDoParticleDetector( void * parameter )
{
  /*
    ug/m3     AQI                 Lvl AQ (Air Quality)
    (air Quality Index)
    0-35     0-50                1   Excellent
    35-75    51-100              2   Average
    75-115   101-150             3   Light pollution
    115-150  151-200             4   moderate
    150-250  201-300             5   heavy
    250-500  >=300               6   serious
  */
  float ADbits = 4095.0f;
  float uPvolts = 3.3f;
  float adcValue = 0.0f;
  float dustDensity = 0.0f;
  float Voc = 0.6f; // Set the typical output voltage in Volts when there is zero dust.
  const float K = 0.5f; // Use the typical sensitivity in units of V per 100ug/m3.
  xEventGroupWaitBits (eg, evtWaitForBME, pdTRUE, pdTRUE, portMAX_DELAY );
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 100; //delay for mS
  for (;;)
  {
    //enable sensor led
    gpio_set_level( GPIO_NUM_4, HIGH ); // set gpio 4 to high to turn on sensor internal led for measurement
    esp_timer_start_once( oneshot_timer, 280 ); // trigger one shot timer for a 280uS timeout, warm up time.
    xEventGroupWaitBits (eg, evtDoParticleRead, pdTRUE, pdTRUE, portMAX_DELAY ); // event will be triggered by the timer expiring, wait here for the 280uS
    adcValue = float( adc1_get_raw(ADC1_CHANNEL_0) ); //take a raw ADC reading from the dust sensor
    gpio_set_level( GPIO_NUM_4, LOW );//Shut off the sensor LED
    adcValue = ( adcValue * uPvolts ) / ADbits; //calculate voltage
    dustDensity = (adcValue / K) * 100.0; //convert volts to dust density
    if ( dustDensity < 0.0f )
    {
      dustDensity = 0.00f; // make negative values a 0
    }
    if ( xSemaphoreTake( sema_PublishPM, 0 ) == pdTRUE )  // don't wait for semaphore to be available
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
      //log_i( "ADC volts %f Dust Density = %ug / m3 ", adcValue, dustDensity ); // print the calculated voltage and dustdensity
      MQTTclient.publish( topicInsidePM, String(dustDensity).c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
      x_eData.PM2 = dustDensity;
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    //log_i( " high watermark % d",  uxTaskGetStackHighWaterMark( NULL ) );
  }
  vTaskDelete( NULL );
}// end fDoParticleDetector()
//// just pass the info the RPi instead of processing here
void fDoTrends( void *pvParameters )
{
  //  const int magicNumber = 96;
  //  double    values[2];
  //  int       lrCount = 0;
  float     lrData = 0.0f;
  //  float     DataPoints[magicNumber] = {0.0f};
  //  float     TimeStamps[magicNumber] = {0.0f};
  //  float     dpHigh = 702.0f;
  //  float     dpLow  = 683.0f;
  //  float     dpAtom = 0.0f;
  //  float     dpMean = 0.0f; //data point mean
  //  float     tsAtom = 0.0f;
  //  float     tsUnit = 0.0f;
  //  float     tsMean = 0.0f;
  //  bool      dpRecalculate = true;
  //  bool      FirstTimeMQTT = true;
  String    apInfo = "";
  apInfo.reserve( 150 );
  for (;;)
  {
    if ( xQueueReceive(xQ_lrData, &lrData, portMAX_DELAY) == pdTRUE )
    {
      apInfo.concat( String((float)xTaskGetTickCount() / 1000.0f) );
      apInfo.concat( "," );
      apInfo.concat( String(lrData) );
      apInfo.concat( ",0.0" );
      apInfo.concat( ",0.0" );
      if ( MQTTclient.connected() )
      {
        xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
        MQTTclient.publish( topicPressureInfo, apInfo.c_str() );
        vTaskDelay( 1 );
        xSemaphoreGive( sema_MQTT_KeepAlive );
      }
      //xQueueSend( xQ_pMessage, (void *) &apInfo, portMAX_DELAY ); // wait for queue space to become available
      apInfo = "";
      //find dpHigh and dpLow, collects historical high and low data points, used for data normalization
      //      if ( lrData > dpHigh )
      //      {
      //        dpHigh = lrData;
      //        dpRecalculate = true;
      //      }
      //      if ( lrData < dpLow )
      //      {
      //        dpLow = lrData;
      //        dpRecalculate = true;
      //      }
      //      if ( lrCount != magicNumber )
      //      {
      //        DataPoints[lrCount] = lrData;
      //        TimeStamps[lrCount] = (float)xTaskGetTickCount() / 1000.0f;
      //        log_i( "lrCount %d TimeStamp %f lrData %f", lrCount, TimeStamps[lrCount], DataPoints[lrCount] );
      //        lrCount++;
      //      } else {
      //        //shift datapoints collected one place to the left
      //        for ( int i = 0; i < magicNumber; i++ )
      //        {
      //          DataPoints[i] = DataPoints[i + 1];
      //          TimeStamps[i] = TimeStamps[i + 1];
      //        }
      //        //insert new data points and time stamp (ts) at the end of the data arrays
      //        DataPoints[magicNumber - 1] = lrData;
      //        TimeStamps[magicNumber - 1] = (float)xTaskGetTickCount() / 1000.0f;
      //        lr.Reset(); //reset the LinearRegression Parameters
      //        // use dpHigh and dpLow to calculate data mean atom for normalization
      //        if ( dpRecalculate )
      //        {
      //          dpAtom = 1.0f / (dpHigh - dpLow); // a new high or low data point has been found adjust mean dpAtom
      //          dpRecalculate = false;
      //        }
      //        //timestamp mean is ts * (1 / ts_Firstcell - ts_Lastcell[magicNumber]). ts=time stamp
      //        tsAtom = 1.0f / (TimeStamps[magicNumber - 1] - TimeStamps[0]); // no need to do this part of the calculation every for loop ++
      //        for (int i = 0; i < magicNumber; i++)
      //        {
      //          dpMean = (DataPoints[i] - dpLow) * dpAtom;
      //          tsMean = TimeStamps[i] * tsAtom;
      //          lr.Data( tsMean, dpMean ); // train lr
      //          //send to mqtt the first time
      //          if ( FirstTimeMQTT )
      //          {
      //            apInfo.concat( String(TimeStamps[i]) );
      //            apInfo.concat( "," );
      //            apInfo.concat( String(DataPoints[i]) );
      //            apInfo.concat( "," );
      //            apInfo.concat(  String(tsMean) );
      //            apInfo.concat( "," );
      //            apInfo.concat( String(dpMean) );
      //            xQueueSend( xQ_pMessage, (void *) &apInfo, portMAX_DELAY ); // wait for queue space to become available
      //            apInfo = "";
      //          }
      //        }
      //        if ( !FirstTimeMQTT )
      //        {
      //          apInfo.concat( String(TimeStamps[magicNumber - 1]) );
      //          apInfo.concat( "," );
      //          apInfo.concat( String(DataPoints[magicNumber - 1]) );
      //          apInfo.concat( "," );
      //          apInfo.concat( String(tsMean) );
      //          apInfo.concat( "," );
      //          apInfo.concat( String(dpMean) );
      //          xQueueSend( xQ_pMessage, (void *) &apInfo, portMAX_DELAY );
      //          apInfo = "";
      //        }
      //        FirstTimeMQTT = false;
      //        lr.Parameters( values );
      //        //calculate
      //        tsUnit = TimeStamps[magicNumber - 1] - TimeStamps[magicNumber - 2]; //get the time stamp quantity
      //        tsUnit += TimeStamps[magicNumber - 1]; //get a future time
      //        tsUnit *= tsAtom; //setting time units to the same scale
      //        log_i( "Calculate next x using y = %f", lr. Calculate( tsUnit ) ); //calculate next datapoint using time stamp
      //        log_i( "Correlation: %f Values: Y=%f and *X + %f ", lr.Correlation(), values[0], values[1] ); // correlation is the strength and direction of the relationship
      //        //calculate datapoint for current time stamp, use current data point against calculated datapoint to get error magnatude and direction.
      //        //log_i( "lr.Error( x_pMessage.TimeStamp, x_pMessage.nDataPoint ) %f", lr.Error(x_pMessage.nTimeStamp, x_pMessage.nDataPoint) ); //
      //      }
      //log_i( "fDoTrends high watermark % d",  uxTaskGetStackHighWaterMark( NULL ) );
    } //if ( xQueueReceive(xQ_lrData, &lrData, portMAX_DELAY) == pdTRUE )
  } //for(;;)
  vTaskDelete ( NULL );
} //void fDoTrends( void *pvParameters )
////
void DoTheBME680Thing( void *pvParameters )
{
  SPI.begin(); // initialize the SPI library
  vTaskDelay( 10 );
  if (!bme.begin()) {
    log_i("Could not find a valid BME680 sensor, check wiring!");
    while (1);
  }
  // Set up oversampling and filter initialization
  bme.setTemperatureOversampling(BME680_OS_8X);
  bme.setHumidityOversampling(BME680_OS_2X);
  bme.setPressureOversampling(BME680_OS_4X);
  bme.setIIRFilterSize(BME680_FILTER_SIZE_3);
  bme.setGasHeater(320, 150); // 320*C for 150 ms
  //wait for a mqtt connection
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  xEventGroupSetBits( eg, evtWaitForBME );
  TickType_t xLastWakeTime    = xTaskGetTickCount();
  const TickType_t xFrequency = 1000 * 15; //delay for mS
  int sendLRDataTrigger       = 240; // 1 hour-ish = 240
  int sendLRdataCount         = sendLRDataTrigger - 1; //send linear regression data when count is reached
  String bmeInfo = "";
  bmeInfo.reserve( 100 );
  for (;;)
  {
    x_eData.Temperature  = bme.readTemperature();
    x_eData.Temperature  = ( x_eData.Temperature * 1.8f ) + 32.0f; // (Celsius x 1.8) + 32
    x_eData.Pressure     = bme.readPressure();
    x_eData.Pressure     = x_eData.Pressure / 133.3223684f; //converts to mmHg
    sendLRdataCount++;
    if ( sendLRdataCount >= sendLRDataTrigger )
    {
      xQueueOverwrite( xQ_lrData, (void *) &x_eData.Pressure ); // send to trends
      sendLRdataCount    = 0;
    }
    x_eData.Humidity     = bme.readHumidity();
    x_eData.IAQ          = fCalulate_IAQ_Index( bme.readGas(), x_eData.Humidity );
    //log_i( " temperature % f, Pressure % f, Humidity % f IAQ % f", x_eData.Temperature, x_eData.Pressure, x_eData.Humidity, x_eData.IAQ);
    bmeInfo.concat( String(x_eData.Temperature, 2) );
    bmeInfo.concat( "," );
    bmeInfo.concat( String(x_eData.Pressure, 2) );
    bmeInfo.concat( "," );
    bmeInfo.concat( String(x_eData.Humidity, 2) );
    bmeInfo.concat( "," );
    bmeInfo.concat( String(x_eData.IAQ, 2) );
    xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
    if ( MQTTclient.connected() )
    {
      MQTTclient.publish( topicInsideInfo, bmeInfo.c_str() );
    }
    xSemaphoreGive( sema_MQTT_KeepAlive );
    xSemaphoreGive( sema_PublishPM ); // release publish of dust density
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
    mqttOK ++;
    xSemaphoreGive( sema_mqttOK );
    xQueueOverwrite( xQ_eData, (void *) &x_eData );// send data to display
    //
    bmeInfo = ""; // empty string
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    // log_i( "DoTheBME280Thing high watermark % d",  uxTaskGetStackHighWaterMark( NULL ) );
  }
  vTaskDelete ( NULL );
}
////
/*
  Important to not set vTaskDelay/vTaskDelayUntil to less then 10. Errors begin to develop with the MQTT and network connection.
  makes the initial wifi/mqtt connection and works to keeps those connections open.
*/
void MQTTkeepalive( void *pvParameters )
{
  sema_MQTT_KeepAlive   = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_MQTT_KeepAlive ); // found keep alive can mess with a publish, stop keep alive during publish
  MQTTclient.setKeepAlive( 90 ); // setting keep alive to 90 seconds makes for a very reliable connection, must be set before the 1st connection is made.
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 250; //delay for ms
  for (;;)
  {
    //check for a is-connected and if the WiFi 'thinks' its connected, found checking on both is more realible than just a single check
    if ( (wifiClient.connected()) && (WiFi.status() == WL_CONNECTED) )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.loop();
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
    else {
      log_i( "MQTT keep alive found MQTT status % s WiFi status % s", String(wifiClient.connected()), String(WiFi.status()) );
      if ( !(wifiClient.connected()) || !(WiFi.status() == WL_CONNECTED) )
      {
        connectToWiFi();
      }
      connectToMQTT();
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete ( NULL );
}
////
void connectToMQTT()
{
  byte mac[5]; // create client ID from mac address
  WiFi.macAddress(mac); // get mac address
  String clientID = String(mac[0]) + String(mac[4]) ; // use mac address to create clientID
  while ( !MQTTclient.connected() )
  {
    MQTTclient.connect( clientID.c_str(), mqtt_username, mqtt_password );
    //log_i( "connecting to MQTT" );
    vTaskDelay( 250 );
  }
  MQTTclient.setCallback( mqttCallback );
  MQTTclient.subscribe( topicOK );
  MQTTclient.subscribe( topicRemainingMoisture_0 );
  //log_i("MQTT Connected");
} //void connectToMQTT()
void connectToWiFi()
{
  int TryCount = 0;
  //log_i( "connect to wifi" );
  while ( WiFi.status() != WL_CONNECTED )
  {
    TryCount++;
    WiFi.disconnect();
    WiFi.begin( SSID, PASSWORD );
    //log_i(" waiting on wifi connection" );
    vTaskDelay( 4000 );
    if ( TryCount == 10 )
    {
      ESP.restart();
    }
  }
  //log_i( "Connected to WiFi" );
  WiFi.onEvent( WiFiEvent );
}
////
void loop() { }

Might work for you.