St7735 border problem

There are "dead" pixels surrounding the boarder of my st7735 display
Im using an ESP8266 that i had around. theres no problem with the display apart from the border, its 2 px off from the left and 1 px from the top, the test programs even manage to use that area so im at a loss, Ill post both "my code" (its someone elses) and the user setup for the TFT_eSPI.h library im using

The code:

/*========================================
|Include all libraries needed for program|
========================================*/

// Include the jpeg decoder library
#include <TJpg_Decoder.h> 

// Include SPIFFS
#include <FS.h> 

//Include JSON
#include <ArduinoJson.h>

//Include base 64 encode
#include <base64.h>

// Include WiFi and http client
#include <ESP8266WiFi.h> 
#include <ESP8266HTTPClient.h>
#include <ESP8266WebServer.h>
#include <WiFiClientSecureBearSSL.h>

// Load tabs attached to this sketch
#include "List_SPIFFS.h"
#include "Web_Fetch.h"
#include "index.h"

// Include the TFT library https://github.com/Bodmer/TFT_eSPI
#include "SPI.h"
#include <TFT_eSPI.h>   

TFT_eSPI tft = TFT_eSPI();         // Invoke custom library
int imageOffsetX = 0, imageOffsetY = 0;
// TFT_eSprite spr = TFT_eSprite(&tft);  // Declare Sprite object "spr" with pointer to "tft" object

// // This next function will be called during decoding of the jpeg file to
// // render each block to the TFT.  If you use a different TFT library
// // you will need to adapt this function to suit.
bool tft_output(int16_t x, int16_t y, uint16_t w, uint16_t h, uint16_t* bitmap)
{
  // Stop further decoding as image is running off bottom of screen
  if ( y >= tft.height() ) return 0;

  // This function will clip the image block rendering automatically at the TFT boundaries
  tft.pushImage(x, y, w, h, bitmap);
 


  // Return 1 to decode next block
  return 1;
}

/*=========================
|User modifiable variables|
=========================*/
// WiFi credentials
#define WIFI_SSID "HomeNet2.4"
#define PASSWORD "ILoveSailing10101"

// Spotify API credentials
#define CLIENT_ID "b5838a56f1054e469d7c8df279a556d2"
#define CLIENT_SECRET 
#define REDIRECT_URI "http://192.168.199.10/callback"

/*=========================
|Non - modifiable variables|
==========================*/

String getValue(HTTPClient &http, String key) {
  bool found = false, look = false, seek = true;
  int ind = 0;
  String ret_str = "";

  int len = http.getSize();
  char char_buff[1];
  WiFiClient * stream = http.getStreamPtr();
  while (http.connected() && (len > 0 || len == -1)) {
    size_t size = stream->available();
    // Serial.print("Size: ");
    // Serial.println(size);
    if (size) {
      int c = stream->readBytes(char_buff, ((size > sizeof(char_buff)) ? sizeof(char_buff) : size));
      if (found) {
        if (seek && char_buff[0] != ':') {
          continue;
        } else if(char_buff[0] != '\n'){
            if(seek && char_buff[0] == ':'){
                seek = false;
                int c = stream->readBytes(char_buff, 1);
            }else{
                ret_str += char_buff[0];
            }
        }else{
            break;
        }
          
        // Serial.print("get: ");
        // Serial.println(get);
      }
      else if ((!look) && (char_buff[0] == key[0])) {
        look = true;
        ind = 1;
      } else if (look && (char_buff[0] == key[ind])) {
        ind ++;
        if (ind == key.length()) found = true;
      } else if (look && (char_buff[0] != key[ind])) {
        ind = 0;
        look = false;
      }
    }
  }
//   Serial.println(*(ret_str.end()));
//   Serial.println(*(ret_str.end()-1));
//   Serial.println(*(ret_str.end()-2));
  if(*(ret_str.end()-1) == ','){
    ret_str = ret_str.substring(0,ret_str.length()-1);
  }
  return ret_str;
}

//http response struct
struct httpResponse{
    int responseCode;
    String responseMessage;
};

struct songDetails{
    int durationMs;
    String album;
    String artist;
    String song;
    String Id;
    bool isLiked;
};

char *parts[10];

void printSplitString(String text,int maxLineSize, int yPos)
{
    int currentWordStart = 0;
    int spacedCounter = 0;
    int spaceIndex = text.indexOf(" ");
    
    while(spaceIndex != -1){
        // Serial.println(ESP.getFreeHeap());
        char *part = parts[spacedCounter]; 
        sprintf(part,text.substring(currentWordStart,spaceIndex).c_str());
        // Serial.println(ESP.getFreeHeap());
        // parts[spacedCounter] = part;
        currentWordStart = spaceIndex;
        spacedCounter++;
        spaceIndex = text.indexOf(" ",spaceIndex+1);
    }
    // Serial.println(ESP.getFreeHeap());
    char *part = parts[spacedCounter]; 
    sprintf(part,text.substring(currentWordStart,text.length()).c_str());
    // Serial.println(ESP.getFreeHeap());
    currentWordStart = spaceIndex;
    size_t counter = 0;
    currentWordStart = 0;
    while(counter <= spacedCounter){
        char printable[maxLineSize];
        char* printablePointer = printable;
        // sprintf in word at counter always
        sprintf(printablePointer,parts[counter]);
        //get length of first word
        int currentLen = 0;
        while(parts[counter][currentLen] != '\0'){
            currentLen++;
            printablePointer++;
        }
        counter++;
        while(counter <= spacedCounter){
            int nextLen = 0;
            while(parts[counter][nextLen] != '\0'){
                nextLen++;
            }
            if(currentLen + nextLen > maxLineSize)
                break;
            sprintf(printablePointer, parts[counter]);
            currentLen += nextLen;
            printablePointer += nextLen;
            counter++;
        }
        String output = String(printable);
        if(output[0] == ' ')
            output = output.substring(1);
        // Serial.println(output);
        tft.setCursor((int)(tft.width()/2 - tft.textWidth(output) / 2),tft.getCursorY());
        tft.println(output);
        // free(printable);
    }
    // Serial.println(ESP.getFreeHeap());
}

//Create spotify connection class
class SpotConn {
public:
	SpotConn(){
        client = std::make_unique<BearSSL::WiFiClientSecure>();
        client->setInsecure();
    }
    // httpResponse makeSpotifyRequest(const char* URI, const char** headers, int numHeaders, const char* RequestBody){
    //     https.begin(*client,URI);
    //     for(;numHeaders>0;numHeaders--,headers += 2){
    //         https.addHeader(*headers,*(headers+1));
    //     }
    //     struct httpResponse res;
    //     res.responseCode = https.POST(RequestBody);
    //     res.responseMessage = https.getString()
    //     https.end();
    //     return res;
    // }
	bool getUserCode(String serverCode) {
        https.begin(*client,"https://accounts.spotify.com/api/token");
        String auth = "Basic " + base64::encode(String(CLIENT_ID) + ":" + String(CLIENT_SECRET));
        https.addHeader("Authorization",auth);
        https.addHeader("Content-Type","application/x-www-form-urlencoded");
        String requestBody = "grant_type=authorization_code&code="+serverCode+"&redirect_uri="+String(REDIRECT_URI);
        // Send the POST request to the Spotify API
        int httpResponseCode = https.POST(requestBody);
        // Check if the request was successful
        if (httpResponseCode == HTTP_CODE_OK) {
            String response = https.getString();
            DynamicJsonDocument doc(1024);
            deserializeJson(doc, response);
            accessToken = String((const char*)doc["access_token"]);
            refreshToken = String((const char*)doc["refresh_token"]);
            tokenExpireTime = doc["expires_in"];
            tokenStartTime = millis();
            accessTokenSet = true;
            Serial.println(accessToken);
            Serial.println(refreshToken);
        }else{
            Serial.println(https.getString());
        }
        // Disconnect from the Spotify API
        https.end();
        return accessTokenSet;
    }
    bool refreshAuth(){
        https.begin(*client,"https://accounts.spotify.com/api/token");
        String auth = "Basic " + base64::encode(String(CLIENT_ID) + ":" + String(CLIENT_SECRET));
        https.addHeader("Authorization",auth);
        https.addHeader("Content-Type","application/x-www-form-urlencoded");
        String requestBody = "grant_type=refresh_token&refresh_token="+String(refreshToken);
        // Send the POST request to the Spotify API
        int httpResponseCode = https.POST(requestBody);
        accessTokenSet = false;
        // Check if the request was successful
        if (httpResponseCode == HTTP_CODE_OK) {
            String response = https.getString();
            DynamicJsonDocument doc(1024);
            deserializeJson(doc, response);
            accessToken = String((const char*)doc["access_token"]);
            // refreshToken = doc["refresh_token"];
            tokenExpireTime = doc["expires_in"];
            tokenStartTime = millis();
            accessTokenSet = true;
            Serial.println(accessToken);
            Serial.println(refreshToken);
        }else{
            Serial.println(https.getString());
        }
        // Disconnect from the Spotify API
        https.end();
        return accessTokenSet;
    }
    bool getTrackInfo(){
        String url = "https://api.spotify.com/v1/me/player/currently-playing";
        https.useHTTP10(true);
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        int httpResponseCode = https.GET();
        bool success = false;
        String songId = "";
        bool refresh = false;
        // Check if the request was successful
        if (httpResponseCode == 200) {
                        // 

            String currentSongProgress = getValue(https,"progress_ms");
            currentSongPositionMs = currentSongProgress.toFloat();
            String imageLink = "";
            while(imageLink.indexOf("image") == -1){
                String height = getValue(https,"height");
                // Serial.println(height);
                if(height.toInt() > 300){
                    imageLink = "";
                    continue;
                }
                imageLink = getValue(https, "url");
                
                // Serial.println(imageLink);
            }
            // Serial.println(imageLink);
            
            
            String albumName = getValue(https,"name");
            String artistName = getValue(https,"name");
            String songDuration = getValue(https,"duration_ms");
            currentSong.durationMs = songDuration.toInt();
            String songName = getValue(https,"name");
            songId = getValue(https,"uri");
            String isPlay = getValue(https, "is_playing");
            isPlaying = isPlay == "true";
            Serial.println(isPlay);
            // Serial.println(songId);
            songId = songId.substring(15,songId.length()-1);
            // Serial.println(songId);
            https.end();
            // listSPIFFS();
            if (songId != currentSong.Id){
                
                if(SPIFFS.exists("/albumArt.jpg") == true) {
                    SPIFFS.remove("/albumArt.jpg");
                }
                // Serial.println("trying to get album art");
                bool loaded_ok = getFile(imageLink.substring(1,imageLink.length()-1).c_str(), "/albumArt.jpg"); // Note name preceded with "/"
                Serial.println("Image load was: ");
                Serial.println(loaded_ok);
                refresh = true;
                tft.fillScreen(TFT_BLACK);
            }
            currentSong.album = albumName.substring(1,albumName.length()-1);
            currentSong.artist = artistName.substring(1,artistName.length()-1);
            currentSong.song = songName.substring(1,songName.length()-1);
            currentSong.Id = songId;
            currentSong.isLiked = findLikedStatus(songId);
            success = true;
        } else {
            Serial.print("Error getting track info: ");
            Serial.println(httpResponseCode);
            // String response = https.getString();
            // Serial.println(response);
            https.end();
        }
        
        
        // Disconnect from the Spotify API
        if(success){
            drawScreen(refresh);
            lastSongPositionMs = currentSongPositionMs;
        }
        return success;
    }
    bool findLikedStatus(String songId){
        String url = "https://api.spotify.com/v1/me/tracks/contains?ids="+songId;
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        https.addHeader("Content-Type","application/json");
        int httpResponseCode = https.GET();
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 200) {
            String response = https.getString();
            https.end();
            return(response == "[ true ]");
        } else {
            Serial.print("Error toggling liked songs: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
            https.end();
        }

        
        // Disconnect from the Spotify API
        
        return success;
    }
    bool toggleLiked(String songId){
        String url = "https://api.spotify.com/v1/me/tracks/contains?ids="+songId;
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        https.addHeader("Content-Type","application/json");
        int httpResponseCode = https.GET();
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 200) {
            String response = https.getString();
            https.end();
            if(response == "[ true ]"){
                currentSong.isLiked = false;
                dislikeSong(songId);
            }else{
                currentSong.isLiked = true;
                likeSong(songId);
            }
            drawScreen(false,true);
            Serial.println(response);
            success = true;
        } else {
            Serial.print("Error toggling liked songs: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
            https.end();
        }

        
        // Disconnect from the Spotify API
        
        return success;
    }
    bool drawScreen(bool fullRefresh = false, bool likeRefresh = false){
        int rectWidth = 120;
        int rectHeight = 10;
        if(fullRefresh){
            if (SPIFFS.exists("/albumArt.jpg") == true) { 
                TJpgDec.setSwapBytes(true);
                TJpgDec.setJpgScale(4);
                TJpgDec.drawFsJpg(26, 5, "/albumArt.jpg");
            }else{
                TJpgDec.setSwapBytes(false);
                TJpgDec.setJpgScale(1);
                TJpgDec.drawFsJpg(0, 0, "/Angry.jpg");
            }
            tft.setTextDatum(MC_DATUM);
            tft.setTextWrap(true);
            tft.setCursor(0,85);
            printSplitString(currentSong.song,20,110);
            printSplitString(currentSong.artist,20,85);
            // tft.drawString(currentSong.artist, tft.width() / 2, 10);
            tft.setCursor(0,110);


            // tft.print(currentSong.song);
            // tft.drawString(currentSong.song, tft.width() / 2, 115);
            // tft.drawString(currentSong.song, tft.width() / 2, 125);
            
            tft.drawRoundRect(
                tft.width() / 2 - rectWidth / 2,
                140,
                rectWidth,
                rectHeight,
                4,
                TFT_DARKGREEN);
        }
        if(fullRefresh || likeRefresh){
            if(currentSong.isLiked){
                TJpgDec.setJpgScale(1);
                TJpgDec.drawFsJpg(128-20, 0, "/heart.jpg");
            //    tft.fillCircle(128-10,10,10,TFT_GREEN);
            }else{
                tft.fillRect(128-21,0,21,21,TFT_BLACK);
            }
        }
        if(lastSongPositionMs > currentSongPositionMs){
            tft.fillSmoothRoundRect(
                tft.width() / 2 - rectWidth / 2 + 2,
                140 + 2,
                rectWidth  - 4,
                rectHeight - 4,
                10,
                TFT_BLACK
            );
            lastSongPositionMs = currentSongPositionMs;
        }
        tft.fillSmoothRoundRect(
            tft.width() / 2 - rectWidth / 2 + 2,
            140 + 2,
            rectWidth * (currentSongPositionMs/currentSong.durationMs) - 4,
            rectHeight - 4,
            10,
            TFT_GREEN
        );
        // Serial.println(currentSongPositionMs);
        // Serial.println(currentSong.durationMs);
        // Serial.println(currentSongPositionMs/currentSong.durationMs);
        return true;
    }
    bool togglePlay(){
        String url = "https://api.spotify.com/v1/me/player/" + String(isPlaying ? "pause" : "play");
        isPlaying = !isPlaying;
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        int httpResponseCode = https.PUT("");
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 204) {
            // String response = https.getString();
            Serial.println((isPlaying ? "Playing" : "Pausing"));
            success = true;
        } else {
            Serial.print("Error pausing or playing: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        getTrackInfo();
        return success;
    }
    bool adjustVolume(int vol){
        String url = "https://api.spotify.com/v1/me/player/volume?volume_percent=" + String(vol);
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        int httpResponseCode = https.PUT("");
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 204) {
            // String response = https.getString();
            currVol = vol;
            success = true;
        }else if(httpResponseCode == 403){
             currVol = vol;
            success = false;
            Serial.print("Error setting volume: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        } else {
            Serial.print("Error setting volume: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        return success;
    }
    bool skipForward(){
        String url = "https://api.spotify.com/v1/me/player/next";
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        int httpResponseCode = https.POST("");
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 204) {
            // String response = https.getString();
            Serial.println("skipping forward");
            success = true;
        } else {
            Serial.print("Error skipping forward: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        getTrackInfo();
        return success;
    }
    bool skipBack(){
        String url = "https://api.spotify.com/v1/me/player/previous";
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        int httpResponseCode = https.POST("");
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 204) {
            // String response = https.getString();
            Serial.println("skipping backward");
            success = true;
        } else {
            Serial.print("Error skipping backward: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        getTrackInfo();
        return success;
    }
    bool likeSong(String songId){
        String url = "https://api.spotify.com/v1/me/tracks?ids="+songId;
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        https.addHeader("Content-Type","application/json");
        char requestBody[] = "{\"ids\":[\"string\"]}";
        int httpResponseCode = https.PUT(requestBody);
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 200) {
            // String response = https.getString();
            Serial.println("added track to liked songs");
            success = true;
        } else {
            Serial.print("Error adding to liked songs: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        return success;
    }
    bool dislikeSong(String songId){
        String url = "https://api.spotify.com/v1/me/tracks?ids="+songId;
        https.begin(*client,url);
        String auth = "Bearer " + String(accessToken);
        https.addHeader("Authorization",auth);
        // https.addHeader("Content-Type","application/json");
        // char requestBody[] = "{\"ids\":[\"string\"]}";
        int httpResponseCode = https.DELETE();
        bool success = false;
        // Check if the request was successful
        if (httpResponseCode == 200) {
            // String response = https.getString();
            Serial.println("removed liked songs");
            success = true;
        } else {
            Serial.print("Error removing from liked songs: ");
            Serial.println(httpResponseCode);
            String response = https.getString();
            Serial.println(response);
        }

        
        // Disconnect from the Spotify API
        https.end();
        return success;
    }
    bool accessTokenSet = false;
    long tokenStartTime;
    int tokenExpireTime;
    songDetails currentSong;
    float currentSongPositionMs;
    float lastSongPositionMs;
    int currVol;
private:
    std::unique_ptr<BearSSL::WiFiClientSecure> client;
    HTTPClient https;
    bool isPlaying = false;
    String accessToken;
    String refreshToken;
};
//Vars for keys, play state, last song, etc.
bool buttonStates[] = {0,0,0,0};
int debounceDelay = 10;
unsigned long debounceTimes[] = {0,0,0,0};
int buttonPins[] = {D1,D2,D0,D6};
//Func to establish connection
//Func to refresh connection 
//Funcs for all api calls

//Create screen control class
//Show a face
//Show currently playing
//Show volume change

//Object instances
ESP8266WebServer server(80); //Server on port 80
SpotConn spotifyConnection;

//Web server callbacks
void handleRoot() {
    Serial.println("handling root");
    char page[500];
    sprintf(page,mainPage,CLIENT_ID,REDIRECT_URI);
    server.send(200, "text/html", String(page)+"\r\n"); //Send web page
}

void handleCallbackPage() {
    if(!spotifyConnection.accessTokenSet){
        if (server.arg("code") == ""){     //Parameter not found
            char page[500];
            sprintf(page,errorPage,CLIENT_ID,REDIRECT_URI);
            server.send(200, "text/html", String(page)); //Send web page
        }else{     //Parameter found
            if(spotifyConnection.getUserCode(server.arg("code"))){
                server.send(200,"text/html","Spotify setup complete Auth refresh in :"+String(spotifyConnection.tokenExpireTime));
            }else{
                char page[500];
                sprintf(page,errorPage,CLIENT_ID,REDIRECT_URI);
                server.send(200, "text/html", String(page)); //Send web page
            }
        }
    }else{
        server.send(200,"text/html","Spotify setup complete");
    }
}
long timeLoop;
long refreshLoop;
bool serverOn = true;
/*==============
|Setup function|
==============*/
void setup(){
    Serial.begin(115200);
    // delay(1000);
    // Initialise SPIFFS
    if (!SPIFFS.begin()) {
        Serial.println("SPIFFS initialisation failed!");
        while (1) yield(); // Stay here twiddling thumbs waiting
    }
    Serial.println("\r\nInitialisation done.");

    // Initialise the TFT
    tft.begin();
    tft.fillScreen(TFT_BLACK);
    tft.setRotation(0);
    // The jpeg image can be scaled by a factor of 1, 2, 4, or 8
    TJpgDec.setJpgScale(4);

    // The byte order can be swapped (set true for TFT_eSPI)
    TJpgDec.setSwapBytes(true);

    // The decoder must be given the exact name of the rendering function above
    TJpgDec.setCallback(tft_output);

    WiFi.begin(WIFI_SSID, PASSWORD);
    while (WiFi.status() != WL_CONNECTED) {
        delay(1000);
        Serial.println("Connecting...");
    }
    Serial.print("Connected\nIp is: ");
    Serial.print(WiFi.localIP());

    server.on("/", handleRoot);      //Which routine to handle at root location
    server.on("/callback", handleCallbackPage);      //Which routine to handle at root location
    server.begin();                  //Start server
    Serial.println("\nHTTP server started");
    for(int i = 0 ; i < 4; i++){
        pinMode(buttonPins[i],INPUT_PULLUP);
    }
    for(int i = 0 ; i < 10; i++){
        parts[i] = (char*)malloc(sizeof(char) * 20);
    }
    tft.println("https://");
    tft.println(WiFi.localIP());
}
// * Sets up WiFi
// * Shows Ip on screen
// * Goes through spotify API handshake (SpotConn func)
// * Initializes screen
// * Checks to see if anything is currently playing (SpotCon func)
// * Shows cute face if needed

void loop(){
    if(spotifyConnection.accessTokenSet){
        if(serverOn){
            server.close();
            serverOn = false;
        }
        if((millis() - spotifyConnection.tokenStartTime)/1000 > spotifyConnection.tokenExpireTime){
            Serial.println("refreshing token");
            if(spotifyConnection.refreshAuth()){
                Serial.println("refreshed token");
            }
        }
        if((millis() - refreshLoop) > 5000){
            spotifyConnection.getTrackInfo();
            // spotifyConnection.drawScreen();
            refreshLoop = millis();
        }
        for(int i = 0; i < 4; i ++){
            int reading = digitalRead(buttonPins[i]);
            if( reading != buttonStates[i]){
                
                    buttonStates[i] = reading;
                    if(reading == LOW){
                        switch (i)
                        {
                        case 3:
                            Serial.println("PausePressed");
                            spotifyConnection.togglePlay();
                            break;
                        case 0:
                            Serial.println("LikePressed");
                            spotifyConnection.toggleLiked(spotifyConnection.currentSong.Id);
                            break;
                        case 2:
                            Serial.println("SkipPressed");
                            spotifyConnection.skipForward();
                            spotifyConnection.getTrackInfo();
                            break;
                        case 1:
                            Serial.println("BackPressed");
                            spotifyConnection.skipBack();
                            spotifyConnection.getTrackInfo();
                            break;
                        
                        default:
                            break;
                        }
                    }
                    
                
            }
        }
        
        int volRequest = map(analogRead(A0),0,1023,100,50);
        if(abs(volRequest - spotifyConnection.currVol) > 1){
            spotifyConnection.adjustVolume(volRequest);
        }
        timeLoop = millis();
    }else{
        server.handleClient();
    }
    // Serial.println(millis() - timeLoop);
    // timeLoop = millis();
}
//Loop function
// *Check for spotify connection refresh
// *Check inputs
// *update screen

The User Config:

//                            USER DEFINED SETTINGS
//   Set driver type, fonts to be loaded, pins used and SPI control method etc
//
//   See the User_Setup_Select.h file if you wish to be able to define multiple
//   setups and then easily select which setup file is used by the compiler.
//
//   If this file is edited correctly then all the library example sketches should
//   run without the need to make any more changes for a particular hardware setup!
//   Note that some sketches are designed for a particular TFT pixel width/height

// User defined information reported by "Read_User_Setup" test & diagnostics example
#define USER_SETUP_INFO "User_Setup"

// Define to disable all #warnings in library (can be put in User_Setup_Select.h)
//#define DISABLE_ALL_LIBRARY_WARNINGS

// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################

// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32

// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT

// STM32 8 bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS

// Tell the library to use parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
//#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor ****

// Display type -  only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI

// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER       // Generic driver for common displays
//#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
#define ST7735_DRIVER      // Define additional parameters below for this display
//#define ILI9163_DRIVER     // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER

// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:

// #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only

// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display

  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
//  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red

// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below

// #define M5STACK

// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH  80
 #define TFT_WIDTH  128
// #define TFT_WIDTH  172 // ST7789 172 x 320
// #define TFT_WIDTH  170 // ST7789 170 x 320
// #define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320
 #define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
// #define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240

// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:

// #define ST7735_INITB
 #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128    // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_ROBOTLCD       // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset

// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.

// #define TFT_INVERSION_ON
 #define TFT_INVERSION_OFF


// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################

// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);

// #define TFT_BL   32            // LED back-light control pin
// #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)



// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED       to NodeMCU pin VIN (or 5V, see below)
// Display SCK       to NodeMCU pin D5
// Display SDI/MOSI  to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET     to NodeMCU pin D4 (or RST, see below)
// Display CS        to NodeMCU pin D8 (or GND, see below)
// Display GND       to NodeMCU pin GND (0V)
// Display VCC       to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######

// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
#define TFT_MISO  PIN_D6  // Automatically assigned with ESP8266 if not defined
#define TFT_MOSI  PIN_D7  // Automatically assigned with ESP8266 if not defined
#define TFT_SCLK  PIN_D5  // Automatically assigned with ESP8266 if not defined

#define TFT_CS    PIN_D8  // Chip select control pin D8
#define TFT_DC    PIN_D3  // Data Command control pin
#define TFT_RST   PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1     // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen

//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only


// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######

// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
// cannot be connected as well to the same SPI signals.
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined

//#define TFT_SPI_OVERLAP

// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS   PIN_D3
//#define TFT_DC   PIN_D5  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######

// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   15  // Chip select control pin
//#define TFT_DC    2  // Data Command control pin
//#define TFT_RST   4  // Reset pin (could connect to RST pin)
//#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST

// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
//#define TFT_SCLK 14
//#define TFT_CS   5  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   22  // LED back-light

//#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen

//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only

// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   14  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   32  // LED back-light (required for M5Stack)

// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######

// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!

// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays

// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT

// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS   33  // Chip select control pin (library pulls permanently low
//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST  32  // Reset pin, toggles on startup

//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD    2  // Read strobe control pin

//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
//#define TFT_D1   13  // so a single register write sets/clears all bits.
//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
//#define TFT_D3   25  // TFT screen update performance.
//#define TFT_D4   17
//#define TFT_D5   16
//#define TFT_D6   27
//#define TFT_D7   14

// ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######

// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5

//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13

// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS   D5 // Chip select control pin to TFT CS
//#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6
//#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7

//#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset
                        // Use an Arduino pin for initial testing as connecting to processor reset
                        // may not work (pulse too short at power up?)

// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################

// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!

#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts

// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT


// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################

// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface

// For RP2040 processor and 8 or 16 bit parallel displays:
// The parallel interface write cycle period is derived from a division of the CPU clock
// speed so scales with the processor clock. This means that the divider ratio may need
// to be increased when overclocking. It may also need to be adjusted dependant on the
// display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined
// the library will set default values which may not suit your display.
// The display controller data sheet will specify the minimum write cycle period. The
// controllers often work reliably for shorter periods, however if the period is too short
// the display may not initialise or graphics will become corrupted.
// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock

// For the RP2040 processor define the SPI port channel used (default 0 if undefined)
//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used

// For the STM32 processor define the SPI port channel used (default 1 if undefined)
//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2

// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.

// #define SPI_FREQUENCY   1000000
// #define SPI_FREQUENCY   5000000
// #define SPI_FREQUENCY  10000000
// #define SPI_FREQUENCY  20000000
#define SPI_FREQUENCY  27000000
// #define SPI_FREQUENCY  40000000
// #define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
// #define SPI_FREQUENCY  80000000

// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY  20000000

// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY  2500000

// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT

// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!

// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.

// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect

// #define SUPPORT_TRANSACTIONS

Are they really dead. or have you just got the origin, an/or size of the panel wrong?

Welcome

Comment this line #define ST7735_GREENTAB and try uncomment another line

Im pretty sure i has to do with the origin because everything is shifted

I went through

// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3

but nothing really changed

Hey i think im working on the same project right now can you help me with some info about it. Where can i message you?

Let's talk through the forum in case anyone else has the same questions as you,

it's been a while since I finished my project and I'm away on holiday so I don't have the final version of the code I used but I'm happy to help you in anyway I can

Did you fixed the "dead pixels " problem? because i have the same issue and my image is mirrored and i don`t know how to flip it.

I want able to completely get rid of the "dead pixels" but i was able to get rid of the "dead pixels" that run from the top to the bottom by first running a few of the examples that come with the library.

I think the problem is caused by the code mistiming the chip select so the "dead pixels" are actually just noise that was on the bus written into the displays memory, this also explains why when running the example code theres almost no problem. The problem might be becasue of a limitation with the esp8266 but I dont know for sure because i havent tried it yet on an esp32, if you can wait a month ill be able to do some proper tests when i get back.

as for flipping the image, I had the same issue, but i dont remember how i fixed it, im pretty sure you just need to search around the code for a mirror option

I think the dead pixels its just a display specific error i tried it with an arduino and i have the same issue so idk if an esp32 will do anything you can try, but my main problem right now is the mirrored image. If you remember what excatly did you do or what did you change it would be a huge help for me because i cant find the problem i know its an easy fix but i can`t seem to find it.

The issue would be is your tft driver is not setting the viewport correctly.

The display controller will have a memory buffer on it. This memory buffer will have garbage on it when the controller is turned on. If you turn on the display without writing anything to this memory buffer the dislaly will just show a whole bunch of random pixels.

When your driver wants to write to the display it will send a command to the display and set an address window of where your output will be stored on the display memory, for it to be read next time the display does a refresh.

The spi protocal couple be sending wrong for the display (MSB vs LSB etc) but i dount thats the case.

Chances are the address window is not being setup correctly.

Looking at the library there is a function called setViewport(x,y,width,height)

You could try calling that. As a test you could set the viewport a lot smaller than the actual screen and see of the library is adhering to the viewport.

Theres also a reset viewport function.

When you return back from your vacation can you respond on how you fixed the mirrored issue?

I fixed it, the dead pixels and the mirrored image, i had to uncoment the #define ST7735_DRIVER in the User_Setup_Select And in the User_setup. All the coments and steps say i to uncoment it only in the user_setup_select.

Had the same border issue.

Fixed it uncommenting #define ST7735_ROBOTLCD instead of the _GREENTAB ones in User_Setup.h

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.