There are "dead" pixels surrounding the boarder of my st7735 display
Im using an ESP8266 that i had around. theres no problem with the display apart from the border, its 2 px off from the left and 1 px from the top, the test programs even manage to use that area so im at a loss, Ill post both "my code" (its someone elses) and the user setup for the TFT_eSPI.h library im using
The code:
/*========================================
|Include all libraries needed for program|
========================================*/
// Include the jpeg decoder library
#include <TJpg_Decoder.h>
// Include SPIFFS
#include <FS.h>
//Include JSON
#include <ArduinoJson.h>
//Include base 64 encode
#include <base64.h>
// Include WiFi and http client
#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <ESP8266WebServer.h>
#include <WiFiClientSecureBearSSL.h>
// Load tabs attached to this sketch
#include "List_SPIFFS.h"
#include "Web_Fetch.h"
#include "index.h"
// Include the TFT library https://github.com/Bodmer/TFT_eSPI
#include "SPI.h"
#include <TFT_eSPI.h>
TFT_eSPI tft = TFT_eSPI(); // Invoke custom library
int imageOffsetX = 0, imageOffsetY = 0;
// TFT_eSprite spr = TFT_eSprite(&tft); // Declare Sprite object "spr" with pointer to "tft" object
// // This next function will be called during decoding of the jpeg file to
// // render each block to the TFT. If you use a different TFT library
// // you will need to adapt this function to suit.
bool tft_output(int16_t x, int16_t y, uint16_t w, uint16_t h, uint16_t* bitmap)
{
// Stop further decoding as image is running off bottom of screen
if ( y >= tft.height() ) return 0;
// This function will clip the image block rendering automatically at the TFT boundaries
tft.pushImage(x, y, w, h, bitmap);
// Return 1 to decode next block
return 1;
}
/*=========================
|User modifiable variables|
=========================*/
// WiFi credentials
#define WIFI_SSID "HomeNet2.4"
#define PASSWORD "ILoveSailing10101"
// Spotify API credentials
#define CLIENT_ID "b5838a56f1054e469d7c8df279a556d2"
#define CLIENT_SECRET
#define REDIRECT_URI "http://192.168.199.10/callback"
/*=========================
|Non - modifiable variables|
==========================*/
String getValue(HTTPClient &http, String key) {
bool found = false, look = false, seek = true;
int ind = 0;
String ret_str = "";
int len = http.getSize();
char char_buff[1];
WiFiClient * stream = http.getStreamPtr();
while (http.connected() && (len > 0 || len == -1)) {
size_t size = stream->available();
// Serial.print("Size: ");
// Serial.println(size);
if (size) {
int c = stream->readBytes(char_buff, ((size > sizeof(char_buff)) ? sizeof(char_buff) : size));
if (found) {
if (seek && char_buff[0] != ':') {
continue;
} else if(char_buff[0] != '\n'){
if(seek && char_buff[0] == ':'){
seek = false;
int c = stream->readBytes(char_buff, 1);
}else{
ret_str += char_buff[0];
}
}else{
break;
}
// Serial.print("get: ");
// Serial.println(get);
}
else if ((!look) && (char_buff[0] == key[0])) {
look = true;
ind = 1;
} else if (look && (char_buff[0] == key[ind])) {
ind ++;
if (ind == key.length()) found = true;
} else if (look && (char_buff[0] != key[ind])) {
ind = 0;
look = false;
}
}
}
// Serial.println(*(ret_str.end()));
// Serial.println(*(ret_str.end()-1));
// Serial.println(*(ret_str.end()-2));
if(*(ret_str.end()-1) == ','){
ret_str = ret_str.substring(0,ret_str.length()-1);
}
return ret_str;
}
//http response struct
struct httpResponse{
int responseCode;
String responseMessage;
};
struct songDetails{
int durationMs;
String album;
String artist;
String song;
String Id;
bool isLiked;
};
char *parts[10];
void printSplitString(String text,int maxLineSize, int yPos)
{
int currentWordStart = 0;
int spacedCounter = 0;
int spaceIndex = text.indexOf(" ");
while(spaceIndex != -1){
// Serial.println(ESP.getFreeHeap());
char *part = parts[spacedCounter];
sprintf(part,text.substring(currentWordStart,spaceIndex).c_str());
// Serial.println(ESP.getFreeHeap());
// parts[spacedCounter] = part;
currentWordStart = spaceIndex;
spacedCounter++;
spaceIndex = text.indexOf(" ",spaceIndex+1);
}
// Serial.println(ESP.getFreeHeap());
char *part = parts[spacedCounter];
sprintf(part,text.substring(currentWordStart,text.length()).c_str());
// Serial.println(ESP.getFreeHeap());
currentWordStart = spaceIndex;
size_t counter = 0;
currentWordStart = 0;
while(counter <= spacedCounter){
char printable[maxLineSize];
char* printablePointer = printable;
// sprintf in word at counter always
sprintf(printablePointer,parts[counter]);
//get length of first word
int currentLen = 0;
while(parts[counter][currentLen] != '\0'){
currentLen++;
printablePointer++;
}
counter++;
while(counter <= spacedCounter){
int nextLen = 0;
while(parts[counter][nextLen] != '\0'){
nextLen++;
}
if(currentLen + nextLen > maxLineSize)
break;
sprintf(printablePointer, parts[counter]);
currentLen += nextLen;
printablePointer += nextLen;
counter++;
}
String output = String(printable);
if(output[0] == ' ')
output = output.substring(1);
// Serial.println(output);
tft.setCursor((int)(tft.width()/2 - tft.textWidth(output) / 2),tft.getCursorY());
tft.println(output);
// free(printable);
}
// Serial.println(ESP.getFreeHeap());
}
//Create spotify connection class
class SpotConn {
public:
SpotConn(){
client = std::make_unique<BearSSL::WiFiClientSecure>();
client->setInsecure();
}
// httpResponse makeSpotifyRequest(const char* URI, const char** headers, int numHeaders, const char* RequestBody){
// https.begin(*client,URI);
// for(;numHeaders>0;numHeaders--,headers += 2){
// https.addHeader(*headers,*(headers+1));
// }
// struct httpResponse res;
// res.responseCode = https.POST(RequestBody);
// res.responseMessage = https.getString()
// https.end();
// return res;
// }
bool getUserCode(String serverCode) {
https.begin(*client,"https://accounts.spotify.com/api/token");
String auth = "Basic " + base64::encode(String(CLIENT_ID) + ":" + String(CLIENT_SECRET));
https.addHeader("Authorization",auth);
https.addHeader("Content-Type","application/x-www-form-urlencoded");
String requestBody = "grant_type=authorization_code&code="+serverCode+"&redirect_uri="+String(REDIRECT_URI);
// Send the POST request to the Spotify API
int httpResponseCode = https.POST(requestBody);
// Check if the request was successful
if (httpResponseCode == HTTP_CODE_OK) {
String response = https.getString();
DynamicJsonDocument doc(1024);
deserializeJson(doc, response);
accessToken = String((const char*)doc["access_token"]);
refreshToken = String((const char*)doc["refresh_token"]);
tokenExpireTime = doc["expires_in"];
tokenStartTime = millis();
accessTokenSet = true;
Serial.println(accessToken);
Serial.println(refreshToken);
}else{
Serial.println(https.getString());
}
// Disconnect from the Spotify API
https.end();
return accessTokenSet;
}
bool refreshAuth(){
https.begin(*client,"https://accounts.spotify.com/api/token");
String auth = "Basic " + base64::encode(String(CLIENT_ID) + ":" + String(CLIENT_SECRET));
https.addHeader("Authorization",auth);
https.addHeader("Content-Type","application/x-www-form-urlencoded");
String requestBody = "grant_type=refresh_token&refresh_token="+String(refreshToken);
// Send the POST request to the Spotify API
int httpResponseCode = https.POST(requestBody);
accessTokenSet = false;
// Check if the request was successful
if (httpResponseCode == HTTP_CODE_OK) {
String response = https.getString();
DynamicJsonDocument doc(1024);
deserializeJson(doc, response);
accessToken = String((const char*)doc["access_token"]);
// refreshToken = doc["refresh_token"];
tokenExpireTime = doc["expires_in"];
tokenStartTime = millis();
accessTokenSet = true;
Serial.println(accessToken);
Serial.println(refreshToken);
}else{
Serial.println(https.getString());
}
// Disconnect from the Spotify API
https.end();
return accessTokenSet;
}
bool getTrackInfo(){
String url = "https://api.spotify.com/v1/me/player/currently-playing";
https.useHTTP10(true);
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
int httpResponseCode = https.GET();
bool success = false;
String songId = "";
bool refresh = false;
// Check if the request was successful
if (httpResponseCode == 200) {
//
String currentSongProgress = getValue(https,"progress_ms");
currentSongPositionMs = currentSongProgress.toFloat();
String imageLink = "";
while(imageLink.indexOf("image") == -1){
String height = getValue(https,"height");
// Serial.println(height);
if(height.toInt() > 300){
imageLink = "";
continue;
}
imageLink = getValue(https, "url");
// Serial.println(imageLink);
}
// Serial.println(imageLink);
String albumName = getValue(https,"name");
String artistName = getValue(https,"name");
String songDuration = getValue(https,"duration_ms");
currentSong.durationMs = songDuration.toInt();
String songName = getValue(https,"name");
songId = getValue(https,"uri");
String isPlay = getValue(https, "is_playing");
isPlaying = isPlay == "true";
Serial.println(isPlay);
// Serial.println(songId);
songId = songId.substring(15,songId.length()-1);
// Serial.println(songId);
https.end();
// listSPIFFS();
if (songId != currentSong.Id){
if(SPIFFS.exists("/albumArt.jpg") == true) {
SPIFFS.remove("/albumArt.jpg");
}
// Serial.println("trying to get album art");
bool loaded_ok = getFile(imageLink.substring(1,imageLink.length()-1).c_str(), "/albumArt.jpg"); // Note name preceded with "/"
Serial.println("Image load was: ");
Serial.println(loaded_ok);
refresh = true;
tft.fillScreen(TFT_BLACK);
}
currentSong.album = albumName.substring(1,albumName.length()-1);
currentSong.artist = artistName.substring(1,artistName.length()-1);
currentSong.song = songName.substring(1,songName.length()-1);
currentSong.Id = songId;
currentSong.isLiked = findLikedStatus(songId);
success = true;
} else {
Serial.print("Error getting track info: ");
Serial.println(httpResponseCode);
// String response = https.getString();
// Serial.println(response);
https.end();
}
// Disconnect from the Spotify API
if(success){
drawScreen(refresh);
lastSongPositionMs = currentSongPositionMs;
}
return success;
}
bool findLikedStatus(String songId){
String url = "https://api.spotify.com/v1/me/tracks/contains?ids="+songId;
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
https.addHeader("Content-Type","application/json");
int httpResponseCode = https.GET();
bool success = false;
// Check if the request was successful
if (httpResponseCode == 200) {
String response = https.getString();
https.end();
return(response == "[ true ]");
} else {
Serial.print("Error toggling liked songs: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
https.end();
}
// Disconnect from the Spotify API
return success;
}
bool toggleLiked(String songId){
String url = "https://api.spotify.com/v1/me/tracks/contains?ids="+songId;
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
https.addHeader("Content-Type","application/json");
int httpResponseCode = https.GET();
bool success = false;
// Check if the request was successful
if (httpResponseCode == 200) {
String response = https.getString();
https.end();
if(response == "[ true ]"){
currentSong.isLiked = false;
dislikeSong(songId);
}else{
currentSong.isLiked = true;
likeSong(songId);
}
drawScreen(false,true);
Serial.println(response);
success = true;
} else {
Serial.print("Error toggling liked songs: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
https.end();
}
// Disconnect from the Spotify API
return success;
}
bool drawScreen(bool fullRefresh = false, bool likeRefresh = false){
int rectWidth = 120;
int rectHeight = 10;
if(fullRefresh){
if (SPIFFS.exists("/albumArt.jpg") == true) {
TJpgDec.setSwapBytes(true);
TJpgDec.setJpgScale(4);
TJpgDec.drawFsJpg(26, 5, "/albumArt.jpg");
}else{
TJpgDec.setSwapBytes(false);
TJpgDec.setJpgScale(1);
TJpgDec.drawFsJpg(0, 0, "/Angry.jpg");
}
tft.setTextDatum(MC_DATUM);
tft.setTextWrap(true);
tft.setCursor(0,85);
printSplitString(currentSong.song,20,110);
printSplitString(currentSong.artist,20,85);
// tft.drawString(currentSong.artist, tft.width() / 2, 10);
tft.setCursor(0,110);
// tft.print(currentSong.song);
// tft.drawString(currentSong.song, tft.width() / 2, 115);
// tft.drawString(currentSong.song, tft.width() / 2, 125);
tft.drawRoundRect(
tft.width() / 2 - rectWidth / 2,
140,
rectWidth,
rectHeight,
4,
TFT_DARKGREEN);
}
if(fullRefresh || likeRefresh){
if(currentSong.isLiked){
TJpgDec.setJpgScale(1);
TJpgDec.drawFsJpg(128-20, 0, "/heart.jpg");
// tft.fillCircle(128-10,10,10,TFT_GREEN);
}else{
tft.fillRect(128-21,0,21,21,TFT_BLACK);
}
}
if(lastSongPositionMs > currentSongPositionMs){
tft.fillSmoothRoundRect(
tft.width() / 2 - rectWidth / 2 + 2,
140 + 2,
rectWidth - 4,
rectHeight - 4,
10,
TFT_BLACK
);
lastSongPositionMs = currentSongPositionMs;
}
tft.fillSmoothRoundRect(
tft.width() / 2 - rectWidth / 2 + 2,
140 + 2,
rectWidth * (currentSongPositionMs/currentSong.durationMs) - 4,
rectHeight - 4,
10,
TFT_GREEN
);
// Serial.println(currentSongPositionMs);
// Serial.println(currentSong.durationMs);
// Serial.println(currentSongPositionMs/currentSong.durationMs);
return true;
}
bool togglePlay(){
String url = "https://api.spotify.com/v1/me/player/" + String(isPlaying ? "pause" : "play");
isPlaying = !isPlaying;
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
int httpResponseCode = https.PUT("");
bool success = false;
// Check if the request was successful
if (httpResponseCode == 204) {
// String response = https.getString();
Serial.println((isPlaying ? "Playing" : "Pausing"));
success = true;
} else {
Serial.print("Error pausing or playing: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
getTrackInfo();
return success;
}
bool adjustVolume(int vol){
String url = "https://api.spotify.com/v1/me/player/volume?volume_percent=" + String(vol);
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
int httpResponseCode = https.PUT("");
bool success = false;
// Check if the request was successful
if (httpResponseCode == 204) {
// String response = https.getString();
currVol = vol;
success = true;
}else if(httpResponseCode == 403){
currVol = vol;
success = false;
Serial.print("Error setting volume: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
} else {
Serial.print("Error setting volume: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
return success;
}
bool skipForward(){
String url = "https://api.spotify.com/v1/me/player/next";
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
int httpResponseCode = https.POST("");
bool success = false;
// Check if the request was successful
if (httpResponseCode == 204) {
// String response = https.getString();
Serial.println("skipping forward");
success = true;
} else {
Serial.print("Error skipping forward: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
getTrackInfo();
return success;
}
bool skipBack(){
String url = "https://api.spotify.com/v1/me/player/previous";
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
int httpResponseCode = https.POST("");
bool success = false;
// Check if the request was successful
if (httpResponseCode == 204) {
// String response = https.getString();
Serial.println("skipping backward");
success = true;
} else {
Serial.print("Error skipping backward: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
getTrackInfo();
return success;
}
bool likeSong(String songId){
String url = "https://api.spotify.com/v1/me/tracks?ids="+songId;
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
https.addHeader("Content-Type","application/json");
char requestBody[] = "{\"ids\":[\"string\"]}";
int httpResponseCode = https.PUT(requestBody);
bool success = false;
// Check if the request was successful
if (httpResponseCode == 200) {
// String response = https.getString();
Serial.println("added track to liked songs");
success = true;
} else {
Serial.print("Error adding to liked songs: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
return success;
}
bool dislikeSong(String songId){
String url = "https://api.spotify.com/v1/me/tracks?ids="+songId;
https.begin(*client,url);
String auth = "Bearer " + String(accessToken);
https.addHeader("Authorization",auth);
// https.addHeader("Content-Type","application/json");
// char requestBody[] = "{\"ids\":[\"string\"]}";
int httpResponseCode = https.DELETE();
bool success = false;
// Check if the request was successful
if (httpResponseCode == 200) {
// String response = https.getString();
Serial.println("removed liked songs");
success = true;
} else {
Serial.print("Error removing from liked songs: ");
Serial.println(httpResponseCode);
String response = https.getString();
Serial.println(response);
}
// Disconnect from the Spotify API
https.end();
return success;
}
bool accessTokenSet = false;
long tokenStartTime;
int tokenExpireTime;
songDetails currentSong;
float currentSongPositionMs;
float lastSongPositionMs;
int currVol;
private:
std::unique_ptr<BearSSL::WiFiClientSecure> client;
HTTPClient https;
bool isPlaying = false;
String accessToken;
String refreshToken;
};
//Vars for keys, play state, last song, etc.
bool buttonStates[] = {0,0,0,0};
int debounceDelay = 10;
unsigned long debounceTimes[] = {0,0,0,0};
int buttonPins[] = {D1,D2,D0,D6};
//Func to establish connection
//Func to refresh connection
//Funcs for all api calls
//Create screen control class
//Show a face
//Show currently playing
//Show volume change
//Object instances
ESP8266WebServer server(80); //Server on port 80
SpotConn spotifyConnection;
//Web server callbacks
void handleRoot() {
Serial.println("handling root");
char page[500];
sprintf(page,mainPage,CLIENT_ID,REDIRECT_URI);
server.send(200, "text/html", String(page)+"\r\n"); //Send web page
}
void handleCallbackPage() {
if(!spotifyConnection.accessTokenSet){
if (server.arg("code") == ""){ //Parameter not found
char page[500];
sprintf(page,errorPage,CLIENT_ID,REDIRECT_URI);
server.send(200, "text/html", String(page)); //Send web page
}else{ //Parameter found
if(spotifyConnection.getUserCode(server.arg("code"))){
server.send(200,"text/html","Spotify setup complete Auth refresh in :"+String(spotifyConnection.tokenExpireTime));
}else{
char page[500];
sprintf(page,errorPage,CLIENT_ID,REDIRECT_URI);
server.send(200, "text/html", String(page)); //Send web page
}
}
}else{
server.send(200,"text/html","Spotify setup complete");
}
}
long timeLoop;
long refreshLoop;
bool serverOn = true;
/*==============
|Setup function|
==============*/
void setup(){
Serial.begin(115200);
// delay(1000);
// Initialise SPIFFS
if (!SPIFFS.begin()) {
Serial.println("SPIFFS initialisation failed!");
while (1) yield(); // Stay here twiddling thumbs waiting
}
Serial.println("\r\nInitialisation done.");
// Initialise the TFT
tft.begin();
tft.fillScreen(TFT_BLACK);
tft.setRotation(0);
// The jpeg image can be scaled by a factor of 1, 2, 4, or 8
TJpgDec.setJpgScale(4);
// The byte order can be swapped (set true for TFT_eSPI)
TJpgDec.setSwapBytes(true);
// The decoder must be given the exact name of the rendering function above
TJpgDec.setCallback(tft_output);
WiFi.begin(WIFI_SSID, PASSWORD);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting...");
}
Serial.print("Connected\nIp is: ");
Serial.print(WiFi.localIP());
server.on("/", handleRoot); //Which routine to handle at root location
server.on("/callback", handleCallbackPage); //Which routine to handle at root location
server.begin(); //Start server
Serial.println("\nHTTP server started");
for(int i = 0 ; i < 4; i++){
pinMode(buttonPins[i],INPUT_PULLUP);
}
for(int i = 0 ; i < 10; i++){
parts[i] = (char*)malloc(sizeof(char) * 20);
}
tft.println("https://");
tft.println(WiFi.localIP());
}
// * Sets up WiFi
// * Shows Ip on screen
// * Goes through spotify API handshake (SpotConn func)
// * Initializes screen
// * Checks to see if anything is currently playing (SpotCon func)
// * Shows cute face if needed
void loop(){
if(spotifyConnection.accessTokenSet){
if(serverOn){
server.close();
serverOn = false;
}
if((millis() - spotifyConnection.tokenStartTime)/1000 > spotifyConnection.tokenExpireTime){
Serial.println("refreshing token");
if(spotifyConnection.refreshAuth()){
Serial.println("refreshed token");
}
}
if((millis() - refreshLoop) > 5000){
spotifyConnection.getTrackInfo();
// spotifyConnection.drawScreen();
refreshLoop = millis();
}
for(int i = 0; i < 4; i ++){
int reading = digitalRead(buttonPins[i]);
if( reading != buttonStates[i]){
buttonStates[i] = reading;
if(reading == LOW){
switch (i)
{
case 3:
Serial.println("PausePressed");
spotifyConnection.togglePlay();
break;
case 0:
Serial.println("LikePressed");
spotifyConnection.toggleLiked(spotifyConnection.currentSong.Id);
break;
case 2:
Serial.println("SkipPressed");
spotifyConnection.skipForward();
spotifyConnection.getTrackInfo();
break;
case 1:
Serial.println("BackPressed");
spotifyConnection.skipBack();
spotifyConnection.getTrackInfo();
break;
default:
break;
}
}
}
}
int volRequest = map(analogRead(A0),0,1023,100,50);
if(abs(volRequest - spotifyConnection.currVol) > 1){
spotifyConnection.adjustVolume(volRequest);
}
timeLoop = millis();
}else{
server.handleClient();
}
// Serial.println(millis() - timeLoop);
// timeLoop = millis();
}
//Loop function
// *Check for spotify connection refresh
// *Check inputs
// *update screen
The User Config:
// USER DEFINED SETTINGS
// Set driver type, fonts to be loaded, pins used and SPI control method etc
//
// See the User_Setup_Select.h file if you wish to be able to define multiple
// setups and then easily select which setup file is used by the compiler.
//
// If this file is edited correctly then all the library example sketches should
// run without the need to make any more changes for a particular hardware setup!
// Note that some sketches are designed for a particular TFT pixel width/height
// User defined information reported by "Read_User_Setup" test & diagnostics example
#define USER_SETUP_INFO "User_Setup"
// Define to disable all #warnings in library (can be put in User_Setup_Select.h)
//#define DISABLE_ALL_LIBRARY_WARNINGS
// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################
// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32
// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT
// STM32 8 bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS
// Tell the library to use parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
//#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor ****
// Display type - only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI
// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER // Generic driver for common displays
//#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
#define ST7735_DRIVER // Define additional parameters below for this display
//#define ILI9163_DRIVER // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER
// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:
// #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only
// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display
#define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue
// #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red
// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below
// #define M5STACK
// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH 80
#define TFT_WIDTH 128
// #define TFT_WIDTH 172 // ST7789 172 x 320
// #define TFT_WIDTH 170 // ST7789 170 x 320
// #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320
#define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
// #define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240
// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:
// #define ST7735_INITB
#define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128 // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_ROBOTLCD // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset
// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.
// #define TFT_INVERSION_ON
#define TFT_INVERSION_OFF
// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################
// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);
// #define TFT_BL 32 // LED back-light control pin
// #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW)
// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED to NodeMCU pin VIN (or 5V, see below)
// Display SCK to NodeMCU pin D5
// Display SDI/MOSI to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET to NodeMCU pin D4 (or RST, see below)
// Display CS to NodeMCU pin D8 (or GND, see below)
// Display GND to NodeMCU pin GND (0V)
// Display VCC to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######
// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
#define TFT_MISO PIN_D6 // Automatically assigned with ESP8266 if not defined
#define TFT_MOSI PIN_D7 // Automatically assigned with ESP8266 if not defined
#define TFT_SCLK PIN_D5 // Automatically assigned with ESP8266 if not defined
#define TFT_CS PIN_D8 // Chip select control pin D8
#define TFT_DC PIN_D3 // Data Command control pin
#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin)
//#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen
//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only
// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######
// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
// cannot be connected as well to the same SPI signals.
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP
// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS PIN_D3
//#define TFT_DC PIN_D5 // Data Command control pin
//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V
// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######
// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 15 // Chip select control pin
//#define TFT_DC 2 // Data Command control pin
//#define TFT_RST 4 // Reset pin (could connect to RST pin)
//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST
// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins
//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
//#define TFT_SCLK 14
//#define TFT_CS 5 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 22 // LED back-light
//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen
//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only
// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS 14 // Chip select control pin
//#define TFT_DC 27 // Data Command control pin
//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL 32 // LED back-light (required for M5Stack)
// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ######
// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!
// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays
// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS 33 // Chip select control pin (library pulls permanently low
//#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST 32 // Reset pin, toggles on startup
//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD 2 // Read strobe control pin
//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus
//#define TFT_D1 13 // so a single register write sets/clears all bits.
//#define TFT_D2 26 // Pins can be randomly assigned, this does not affect
//#define TFT_D3 25 // TFT screen update performance.
//#define TFT_D4 17
//#define TFT_D5 16
//#define TFT_D6 27
//#define TFT_D7 14
// ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ######
// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5
//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13
// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS D5 // Chip select control pin to TFT CS
//#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6
//#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7
//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset
// Use an Arduino pin for initial testing as connecting to processor reset
// may not work (pulse too short at power up?)
// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################
// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts
// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT
// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################
// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface
// For RP2040 processor and 8 or 16 bit parallel displays:
// The parallel interface write cycle period is derived from a division of the CPU clock
// speed so scales with the processor clock. This means that the divider ratio may need
// to be increased when overclocking. It may also need to be adjusted dependant on the
// display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined
// the library will set default values which may not suit your display.
// The display controller data sheet will specify the minimum write cycle period. The
// controllers often work reliably for shorter periods, however if the period is too short
// the display may not initialise or graphics will become corrupted.
// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock
// For the RP2040 processor define the SPI port channel used (default 0 if undefined)
//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used
// For the STM32 processor define the SPI port channel used (default 1 if undefined)
//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2
// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// #define SPI_FREQUENCY 1000000
// #define SPI_FREQUENCY 5000000
// #define SPI_FREQUENCY 10000000
// #define SPI_FREQUENCY 20000000
#define SPI_FREQUENCY 27000000
// #define SPI_FREQUENCY 40000000
// #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
// #define SPI_FREQUENCY 80000000
// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY 20000000
// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY 2500000
// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT
// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!
// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.
// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect
// #define SUPPORT_TRANSACTIONS