For the second case, maybe this will work:
int latchPin = 10;
int clockPin = 13;
int dataPin = 11;
int clock = 9;
int Reset = 8;
int latchPinPORTB = latchPin - 8;
int clockPinPORTB = clockPin - 8;
int dataPinPORTB = dataPin - 8;
int i = 0;
const char incomingByte[] = "This is my static message!";
long scrolling_word[6];
const int array_turn = strlen(incomingByte);;
byte patterns[100][6];
byte dummy_array[70][6] = {BA, BB, BC, BD, BE, BF, BG, BH, BI, BJ, BK, BL, BM, BN, BO, BP, BQ, BR, BS, BT, BU, BV, BW, BX, BY, BZ, SPACE, NUM0, NUM1, NUM2, NUM3, NUM4, NUM5, NUM6, NUM7, NUM8, NUM9, DEVIDE, TWODOTS, DOT, COMA, LINE, QUASTION, MARK, LA, LB, LC, LD, LE, LF, LG, LH, LI, LJ, LK, LL, LM, LN, LO, LP, LQ, LR, LS, LT, LU, LV, LW, LX, LY, LZ};
void setup() {
Serial.begin(9600);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(latchPin, OUTPUT);
pinMode(clock, OUTPUT);
pinMode(Reset, OUTPUT);
digitalWrite(Reset, HIGH);
digitalWrite(Reset, LOW);
setupSPI();
}
void display_word(int loops, byte word_print[][6], int num_patterns, int delay_langth) { // this function displays your symbols
i = 0;// resets the counter fot the 4017
for (int g = 0; g < 6; g++) //resets the the long int where your word goes
scrolling_word[g] = 0;
for (int x = 0; x < num_patterns; x++) { //main loop, goes over your symbols
// you will need to find a better way to make the symbols scroll my way is limited for 24 columns
for (int r = 0; r < 6; r++) //puts the buildes the first symbol
scrolling_word[r] |= word_print[x][r];
for (int z = 0; z < 6; z++) { //the sctolling action
for (int p = 0; p < 6; p++)
scrolling_word[p] = scrolling_word[p] << 1;
// end of the scrolling funcion
for (int t = 0; t < delay_langth; t++) { // delay function, it just loops over the same display
for (int y = 0; y < 6; y++) { // scaning the display
if (i == 6) { // counting up to 6 with the 4017
digitalWrite(Reset, HIGH);
digitalWrite(Reset, LOW);
i = 0;
}
latchOff();
spi_transfer(make_word(0x01000000, y)); // sending the data
spi_transfer(make_word(0x00010000, y));
spi_transfer(make_word(0x00000100, y));
latchOn();
delayMicroseconds(800);//waiting a bit
latchOff();
spi_transfer(0);// clearing the data
spi_transfer(0);
spi_transfer(0);
latchOn();
digitalWrite(clock, HIGH); //counting up with the 4017
digitalWrite(clock, LOW);
i++;
}
}
}
}
finish_scroll(delay_langth);
}
void finish_scroll(int delay_scroll) { // this function is the same as the funcion above, it just finishing scrolling
for (int n = 0; n < 24; n++) {
for (int h = 0; h < 6; h++)
scrolling_word[h] = scrolling_word[h] << 1;
for (int w = 0; w < delay_scroll; w++) {
for (int k = 0; k < 6; k++) {
if (i == 6) {
digitalWrite(Reset, HIGH);
digitalWrite(Reset, LOW);
i = 0;
}
latchOff();
spi_transfer(make_word(0x01000000, k));
spi_transfer(make_word(0x00010000, k));
spi_transfer(make_word(0x00000100, k));
latchOn();
delayMicroseconds(800);
latchOff();
spi_transfer(0);
spi_transfer(0);
spi_transfer(0);
latchOn();
digitalWrite(clock, HIGH);
digitalWrite(clock, LOW);
i++;
}
}
}
}
byte make_word (long posistion, byte turn) {
byte dummy_word = 0;
for (int q = 0; q < 8; q++) {
if (scrolling_word[turn] & (posistion << q))
dummy_word |= 0x01 << q;
}
return dummy_word;
}
void loop() {
if (array_turn != 0) {
for (int az = 0; az < array_turn; az++) {
if ((incomingByte[az] > 64 && incomingByte[az] < 91) || (incomingByte[az] > 96 && incomingByte[az] < 123)) {
if (incomingByte[az] > 64 && incomingByte[az] < 91) {
for (int lal = 0; lal < 6; lal++)
patterns[az][lal] = dummy_array[incomingByte[az] - 65][lal];
}
else {
for (int lal = 0; lal < 6; lal++)
patterns[az][lal] = dummy_array[incomingByte[az] - 53][lal];
}
}
else {
switch (incomingByte[az]) {
case 32://space
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[26][lol];
break;
case 33://mark
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[43][lol];
break;
case 45://line
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[41][lol];
break;
case 44://coma
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[40][lol];
break;
case 46://dot
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[39][lol];
break;
case 47://dvide
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[37][lol];
break;
case 48://0
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[27][lol];
break;
case 49://1
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[28][lol];
break;
case 50://2
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[29][lol];
break;
case 51://3
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[30][lol];
break;
case 52://4
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[31][lol];
break;
case 53://5
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[32][lol];
break;
case 54://6
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[33][lol];
break;
case 55://7
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[34][lol];
break;
case 56://8
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[35][lol];
break;
case 57://9
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[36][lol];
break;
case 58://tow dots
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[38][lol];
break;
case 63://quastion
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[42][lol];
break;
default:
for (int lol = 0; lol < 6; lol++)
patterns[az][lol] = dummy_array[26][lol];
break;
}
}
}
}
display_word(1, patterns, array_turn, 15);
// array_turn = 0;
}
//display_word(1,patterns,43,15);// calls for the display_pattern function and says that int loop = 15(if you do more loop the pattern whould scrrol slower).
void latchOn() {
bitSet(PORTB, latchPinPORTB);
}
void latchOff() {
bitClear(PORTB, latchPinPORTB);
}
void setupSPI() {
byte clr;
SPCR |= ( (1 << SPE) | (1 << MSTR) ); // enable SPI as master
//SPCR |= ( (1<<SPR1) | (1<<SPR0) ); // set prescaler bits
SPCR &= ~( (1 << SPR1) | (1 << SPR0) ); // clear prescaler bits
clr = SPSR; // clear SPI status reg
clr = SPDR; // clear SPI data reg
SPSR |= (1 << SPI2X); // set prescaler bits
//SPSR &= ~(1<<SPI2X); // clear prescaler bits
delay(10);
}
byte spi_transfer(byte data)
{
SPDR = data; // Start the transmission
while (!(SPSR & (1 << SPIF))) // Wait the end of the transmission
{
};
return SPDR; // return the received byte, we don't need that
}