Timer issues to control PWM pins

Hello,

While using the Arduino Mega2560 Rev3, I encountered a problem in which I was attempting to control pins 44,45 using analogWrite to obtain PWM output while simultaneously using the Servo library, which changed all of the PWM pin timings and caused those pins 44,45 to stop operating normally.

I need pins 44,45 to work at 490 Hz. I tried those methods and still couldn't find a solution:

  1. reset the clock and timing on the program manually for those 44,45 pins after setting up the servo library
                          #include <Wire.h>
                          #include <VL53L0X.h>
                          #include <Servo.h>
                          
                          
                          
                          const int yawServoPin = 9;
                          const int pitchServoPin = 10;
                          
                          Servo yawServo;
                          Servo pitchServo;
                          
                          VL53L0X sensor;
                          
                          // Motor control pins
                          const int leftMotorForwardPin = 49;
                          const int leftMotorBackwardPin = 47;
                          const int rightMotorForwardPin = 48;
                          const int rightMotorBackwardPin = 46;
                          const int rightMotorEPin = 44;
                          const int leftMotorEPin = 45;
                          
                          int Speed = 50;
                          
                          const int leftLedPin = 5;
                          const int rightLedPin = 6;
                          
                          
                          
                          // Laser measurement settings
                          const int pitchAngle = 35;
                          const int opening = 180;
                          const int timming = 400;
                          const int steps = 2;
                          const int laserDistanceDiff = 30;
                          int referenceMeasurements[steps];
                          
                          // Uncomment this line to use long range mode. This
                          // increases the sensitivity of the sensor and extends its
                          // potential range, but increases the likelihood of getting
                          // an inaccurate reading because of reflections from objects
                          // other than the intended target. It works best in dark
                          // conditions.
                          
                          //#define LONG_RANGE
                          
                          
                          // Uncomment ONE of these two lines to get
                          // - higher speed at the cost of lower accuracy OR
                          // - higher accuracy at the cost of lower speed
                          
                          //#define HIGH_SPEED
                          //#define HIGH_ACCURACY
                          
                          
                          void moveForward() {
                            // Move the robot forward
                            Serial.println("Moving forward...");
                          
                            digitalWrite(leftMotorForwardPin, HIGH);
                            digitalWrite(leftMotorBackwardPin, LOW);
                            digitalWrite(rightMotorForwardPin, HIGH);
                            digitalWrite(rightMotorBackwardPin, LOW);
                          
                            analogWrite(rightMotorEPin, 2 * Speed);
                            analogWrite(leftMotorEPin, 2 * Speed);
                            analogWrite(rightLedPin, 2 * Speed);
                            analogWrite(leftLedPin, 2 * Speed);
                             
                          }
                          
                          void setup()
                          {
                            
                            Serial.begin(9600);
                            Wire.begin();
                            // Attach servos
                            yawServo.attach(yawServoPin);
                            
                            yawServo.write(0);
                          
// Stop Timer5
TCCR5A = 0;
TCCR5B = 0;
TCNT5 = 0;
  
// Set Timer5 to Phase Correct PWM mode (the default mode for Arduino)
TCCR5A = _BV(WGM50) | _BV(COM5C1) | _BV(COM5B1);
TCCR5B = _BV(WGM52) | _BV(CS51); // Prescaler set to 8
  
// The default TOP value for 8-bit resolution (255)
OCR5C = 0; // PWM value for pin 44 (start at 0)
OCR5B = 0; // PWM value for pin 45 (start at 0)
                            
                            sensor.setTimeout(500);
                            if (!sensor.init())
                            {
                              Serial.println("Failed to detect and initialize sensor!");
                              while (1) {}
                            }
                          
                          
                          #if defined LONG_RANGE
                            // lower the return signal rate limit (default is 0.25 MCPS)
                            sensor.setSignalRateLimit(0.1);
                            // increase laser pulse periods (defaults are 14 and 10 PCLKs)
                            sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
                            sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
                          #endif
                          
                          #if defined HIGH_SPEED
                            // reduce timing budget to 20 ms (default is about 33 ms)
                            sensor.setMeasurementTimingBudget(20000);
                          #elif defined HIGH_ACCURACY
                            // increase timing budget to 200 ms
                            sensor.setMeasurementTimingBudget(200000);
                          #endif
                          
                          
                          }
                          
                          void loop()
                          {  
                          
                           for (int i = 0; i < steps; i++) {
                            yawServo.write(i * (opening / (steps - 1)));
                              delay(timming);
                                
                          
                              
                              referenceMeasurements[i] = sensor.readRangeSingleMillimeters();
                                if (sensor.timeoutOccurred()) { Serial.print(" TIMEOUT"); }
                              Serial.print("Reference measurement at step ");
                              Serial.print(i);
                              Serial.print(" Distance (mm): ");
                              Serial.println(referenceMeasurements[i]);
                                      moveForward();
                              delay(timming);
                            }
                          
                          }
  1. Changing the Servo library for timer 5 to it will not make any change on timer 5 group (which I may have not done properly)
                /*
                 Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
                 Copyright (c) 2009 Michael Margolis.  All right reserved.
                
                 This library is free software; you can redistribute it and/or
                 modify it under the terms of the GNU Lesser General Public
                 License as published by the Free Software Foundation; either
                 version 2.1 of the License, or (at your option) any later version.
                
                 This library is distributed in the hope that it will be useful,
                 but WITHOUT ANY WARRANTY; without even the implied warranty of
                 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
                 Lesser General Public License for more details.
                
                 You should have received a copy of the GNU Lesser General Public
                 License along with this library; if not, write to the Free Software
                 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
                 */
                
                #if defined(ARDUINO_ARCH_AVR)
                
                #include <avr/interrupt.h>
                #include <Arduino.h>
                
                #include "Servo.h"
                
                #define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
                #define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
                
                
                #define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
                
                //#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER)
                
                static servo_t servos[MAX_SERVOS];                          // static array of servo structures
                static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)
                
                uint8_t ServoCount = 0;                                     // the total number of attached servos
                
                
                // convenience macros
                #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
                #define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER)       // returns the index of the servo on this timer
                #define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + _channel)     // macro to access servo index by timer and channel
                #define SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // macro to access servo class by timer and channel
                
                #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in us for this servo
                #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in us for this servo
                
                /************ static functions common to all instances ***********************/
                
                static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
                {
                  if( Channel[timer] < 0 )
                    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
                  else{
                    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
                      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
                  }
                
                  Channel[timer]++;    // increment to the next channel
                  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
                    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
                    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if activated
                      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
                  }
                  else {
                    // finished all channels so wait for the refresh period to expire before starting over
                    if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) )  // allow a few ticks to ensure the next OCR1A not missed
                      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
                    else
                      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
                    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
                  }
                }
                
                #ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
                // Interrupt handlers for Arduino
                #if defined(_useTimer1)
                SIGNAL (TIMER1_COMPA_vect)
                {
                  handle_interrupts(_timer1, &TCNT1, &OCR1A);
                }
                #endif
                
                #if defined(_useTimer3)
                SIGNAL (TIMER3_COMPA_vect)
                {
                  handle_interrupts(_timer3, &TCNT3, &OCR3A);
                }
                #endif
                
                #if defined(_useTimer4)
                SIGNAL (TIMER4_COMPA_vect)
                {
                  handle_interrupts(_timer4, &TCNT4, &OCR4A);
                }
                #endif
                
/*
#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
  handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
*/
                
                #elif defined WIRING
                // Interrupt handlers for Wiring
                #if defined(_useTimer1)
                void Timer1Service()
                {
                  handle_interrupts(_timer1, &TCNT1, &OCR1A);
                }
                #endif
                #if defined(_useTimer3)
                void Timer3Service()
                {
                  handle_interrupts(_timer3, &TCNT3, &OCR3A);
                }
                #endif
                #endif
                
                
                static void initISR(timer16_Sequence_t timer)
                {
                #if defined (_useTimer1)
                  if(timer == _timer1) {
                    TCCR1A = 0;             // normal counting mode
                    TCCR1B = _BV(CS11);     // set prescaler of 8
                    TCNT1 = 0;              // clear the timer count
                #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
                    TIFR |= _BV(OCF1A);      // clear any pending interrupts
                    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt
                #else
                    // here if not ATmega8 or ATmega128
                    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts
                    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt
                #endif
                #if defined(WIRING)
                    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
                #endif
                  }
                #endif
                
                #if defined (_useTimer3)
                  if(timer == _timer3) {
                    TCCR3A = 0;             // normal counting mode
                    TCCR3B = _BV(CS31);     // set prescaler of 8
                    TCNT3 = 0;              // clear the timer count
                #if defined(__AVR_ATmega128__)
                    TIFR |= _BV(OCF3A);     // clear any pending interrupts
                	ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt
                #else
                    TIFR3 = _BV(OCF3A);     // clear any pending interrupts
                    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt
                #endif
                #if defined(WIRING)
                    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only
                #endif
                  }
                #endif
                
                #if defined (_useTimer4)
                  if(timer == _timer4) {
                    TCCR4A = 0;             // normal counting mode
                    TCCR4B = _BV(CS41);     // set prescaler of 8
                    TCNT4 = 0;              // clear the timer count
                    TIFR4 = _BV(OCF4A);     // clear any pending interrupts
                    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt
                  }
                #endif
                
/*
#if defined (_useTimer5)
if(timer == _timer5) {
  TCCR5A = 0;             // normal counting mode
  TCCR5B = _BV(CS51);     // set prescaler of 8
  TCNT5 = 0;              // clear the timer count
  TIFR5 = _BV(OCF5A);     // clear any pending interrupts
  TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
*/
                 }                                                                                       
                
                static void finISR(timer16_Sequence_t timer)
                {
                    //disable use of the given timer
                #if defined WIRING   // Wiring
                  if(timer == _timer1) {
                    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
                    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
                    #else
                    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
                    #endif
                    timerDetach(TIMER1OUTCOMPAREA_INT);
                  }
                  else if(timer == _timer3) {
                    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
                    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
                    #else
                    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
                    #endif
                    timerDetach(TIMER3OUTCOMPAREA_INT);
                  }
                #else
                  //For Arduino - in future: call here to a currently undefined function to reset the timer
                  (void) timer;  // squash "unused parameter 'timer' [-Wunused-parameter]" warning
                #endif
                }
                
                static boolean isTimerActive(timer16_Sequence_t timer)
                {
                  // returns true if any servo is active on this timer
                  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
                    if(SERVO(timer,channel).Pin.isActive == true)
                      return true;
                  }
                  return false;
                }
                
                
                /****************** end of static functions ******************************/
                
                Servo::Servo()
                {
                  if( ServoCount < MAX_SERVOS) {
                    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
                	servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
                  }
                  else
                    this->servoIndex = INVALID_SERVO ;  // too many servos
                }
                
                uint8_t Servo::attach(int pin)
                {
                  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
                }
                
                uint8_t Servo::attach(int pin, int min, int max)
                {
                  if(this->servoIndex < MAX_SERVOS ) {
                    pinMode( pin, OUTPUT) ;                                   // set servo pin to output
                    servos[this->servoIndex].Pin.nbr = pin;
                    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
                    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 us
                    this->max  = (MAX_PULSE_WIDTH - max)/4;
                    // initialize the timer if it has not already been initialized
                    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
                    if(isTimerActive(timer) == false)
                      initISR(timer);
                    servos[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
                  }
                  return this->servoIndex ;
                }
                
                void Servo::detach()
                {
                  servos[this->servoIndex].Pin.isActive = false;
                  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
                  if(isTimerActive(timer) == false) {
                    finISR(timer);
                  }
                }
                
                void Servo::write(int value)
                {
                  if(value < MIN_PULSE_WIDTH)
                  {  // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
                    if(value < 0) value = 0;
                    if(value > 180) value = 180;
                    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());
                  }
                  this->writeMicroseconds(value);
                }
                
                void Servo::writeMicroseconds(int value)
                {
                  // calculate and store the values for the given channel
                  byte channel = this->servoIndex;
                  if( (channel < MAX_SERVOS) )   // ensure channel is valid
                  {
                    if( value < SERVO_MIN() )          // ensure pulse width is valid
                      value = SERVO_MIN();
                    else if( value > SERVO_MAX() )
                      value = SERVO_MAX();
                
                    value = value - TRIM_DURATION;
                    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
                
                    uint8_t oldSREG = SREG;
                    cli();
                    servos[channel].ticks = value;
                    SREG = oldSREG;
                  }
                }
                
                int Servo::read() // return the value as degrees
                {
                  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
                }
                
                int Servo::readMicroseconds()
                {
                  unsigned int pulsewidth;
                  if( this->servoIndex != INVALID_SERVO )
                    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;   // 12 aug 2009
                  else
                    pulsewidth  = 0;
                
                  return pulsewidth;
                }
                
                bool Servo::attached()
                {
                  return servos[this->servoIndex].Pin.isActive ;
                }
                
                #endif // ARDUINO_ARCH_AVR

After experimenting with those and other methods, I discovered that pins 5,6 work well even when the Servo is defined and connected, which is exactly how I intended pins 44,45 to behave. I would prefer to work on 44,45 for this program due to mechanical considerations, and other pins on the board, including 5,6, will be in use; if there is anyone who could help me with that issue, it would be really appreciated.

Hi @ohad101

The analogWrite() function requires timer 5 to generate PWM on pins 44 and 45, however in the servo library code for the Mega, timer 5 also happens to be the first one to be selected.

Working around this conflict requires the definition and enum element for timer 5 to be commented out in the "Servo.h" file:

// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define _useTimer5
#define _useTimer1
#define _useTimer3
#define _useTimer4
typedef enum { /*_timer5,*/ _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t;

Note that a my Windows machine at least, the servo library was located in the ...\Documents\Arduino\libraries... directory and not in ...\Program Files (x86)\Arduino\libraries.

Thank you very much @MartinL ! I missed that part while editing this configuration, now it works perfectly!