Ultrasonic Sensor and LCD Display code help needed !!

Hi, i take the 2 examples of the arduino library and mix together this exaple should print in the lcd the distance in "cm" every 100 ms

copy and paste the code and this should work

/*
  LiquidCrystal Library - Blink
 
 Demonstrates the use a 16x2 LCD display.  The LiquidCrystal
 library works with all LCD displays that are compatible with the 
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.
 
 This sketch prints "Hello World!" to the LCD and makes the 
 cursor block blink.
 
 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
   * ends to +5V and ground
   * wiper to LCD VO pin (pin 3)
 
 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe 
 modified 22 Nov 2010
 by Tom Igoe
 
 This example code is in the public domain.

 http://arduino.cc/en/Tutorial/LiquidCrystalBlink
 
 */

// include the library code:
#include <LiquidCrystal.h>

const int pingPin = 7;

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
  // set up the LCD's number of columns and rows: 
  lcd.begin(16, 2);
  // Print a message to the LCD.
  lcd.print("hello, world!");
}

void loop() {
  
  long duration, inches, cm;
  
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
  delayMicroseconds(2);
  digitalWrite(pingPin, HIGH);
  delayMicroseconds(5);
  digitalWrite(pingPin, LOW);
  
  pinMode(pingPin, INPUT);
  duration = pulseIn(pingPin, HIGH);

  // convert the time into a distance
  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);
  
  lcd.print("cm: ");
  lcd.print(cm);
  
  delay(100);
}

long microsecondsToInches(long microseconds)
{
  // According to Parallax's datasheet for the PING))), there are
  // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
  // second).  This gives the distance travelled by the ping, outbound
  // and return, so we divide by 2 to get the distance of the obstacle.
  // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
  return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds)
{
  // The speed of sound is 340 m/s or 29 microseconds per centimeter.
  // The ping travels out and back, so to find the distance of the
  // object we take half of the distance travelled.
  return microseconds / 29 / 2;
}

PD: i don't test the code in a real arduino because i m at work but the compiler says all it s ok xD
PD2: there is a library some where to do the ping alot easy look at google is like you only have to write distance(); and the library do all the job :stuck_out_tongue: