Wind turbine Savonious Charger based on Joule Thief - advise for a charger?

Another way to look at this is in terms of what the part is actually doing while in its inductive and resistive stages. Like other applications where there is an impedance mismatch with inductors, part of the introduced signal is reflected back to the source. This can provide some protection for sensitive devices on the other side of the ferrite bead, but also introduces an “L” into the circuitry and this can cause resonances and oscillations (ringing). So when the bead is still inductive in nature, part of the noise energy will be reflected and some percentage will pass through, depending on the inductance and impedance values.

When the ferrite bead is in its resistive stage, the component behaves, as stated, like a resistor and therefore impedes the noise energy and absorbs this energy from the circuit and does so in the form of heat. Though constructed in an identical manner as some inductors, using the same processes, manufacturing lines and techniques, machinery and some of the same component materials, the ferrite bead uses a lossy ferrite material while an inductor utilizes a lower loss ferrite material. This is shown in curves of Figure 2.


1008_F2_fig2

Figure 2: Reflection vs. Absorption

This figure shows [μ’’] which is used to reflect the behavior of the lossy ferrite bead material.