
Appendix C

ArdEx Command Reference

In ArdEx, everything entered by the user is either a command or an instruction.

Commands are used to control the ArdEx environment, providing ways to load, save

or display memory, or to execute programs.

Instructions are executed by the processor. Anything preceded by a number is

treated as an instruction to be stored at that step address for later execution. In-

structions entered interactively will be executed immediately.

Instructions are documented in Appendix D.

• BASE 2 | 10 | 16, num
BASE 10 | 16
In the first form, num will be displayed in the selected number base. Num can

be a valid number including 0x or 0b prefix.

In the second from, subsequent DUMP, LIST, STAT and STEP commands will

show certain numbers in the selected number base. The default number base

is 10.

• BOOT flag[, step]
Sets behaviour of ArdEx on hardware reset. By default, or if flag is 0, ArdEx

boots with all steps initialised to STOP instructions and all RAM initialised to

0. If bit 0 of flag is set, all instructions will be automatically loaded by the

LOAD command. If bit 1 of flag is set, all RAM will be automatically loaded

by the RAML command. If bit 2 of flag is set, execution will be started at step

(default 0) by the RUN command.

• BRK [brkid[, step]]
Manages user-defined breakpoints. With no arguments, active breakpoints are

listed showing their brkid and step. With one argument, breakpoint brkid is

disabled. With two arguments, breakpoint brkid is enabled at program step

step. When execution reaches this step, execution will halt and the breakpoint

number and the register contents will be displayed. There are only two break-

points available: brkid 0 or 1.

• CONT
Resumes execution following a breakpoint or a user interrupt with <Ctrl>-C.

• DUMP addr[, nbytes]

109

110 APPENDIX C. ARDEX COMMAND REFERENCE

Displays memory in the currently selected number base starting at addr. If

nbytes is specified, that many bytes will be displayed. The default is 16.

• LIST [step1[, step2]]
Displays instructions stored in program memory. With no arguments, all 256

steps are listed. With one argument, just the instruction at that step is listed.

With two arguments, all instructions from step1 to step2 are listed.

• LOAD [step[, step]]
Loads instructions from EEPROM into program memory. With no arguments,

all 256 steps are loaded. With one argument, just the instruction at that step

is loaded. With two arguments, all instructions from step1 to step2 are loaded.

Resulting program steps may be illegal if EEPROM has not been written by a

previous SAVE command.

• NEW
Sets all 256 program steps to the STOP instruction. Sets all registers to zero.

• OVER
If the instruction about to be executed is a CALL, execution continues until the

corresponding RET has been executed or a breakpoint occurs. It then reports

register values. If a breakpoint does occur, execution will not be stopped by the

RET instruction.

For all other instructions, OVER single-steps just like STEP.

• RAML
Load all user RAM from EEPROM. Results are unpredictable if the EEPROM

has not been written by a previous RAMS command.

• RAMS
Save all user RAM to EEPROM.

• RELO start,end,newstart
Relocate a block of instructions to a different step. All three arguments are

required. The first two arguments, start and end, define a block of instructions.

The third argument, newstart, is the step to which the instruction at start is to

be moved, with the other instructions following.

Steps vacated by the move will be filled with STOP instructions. Source and

destination blocks may overlap. Moves are allowed upwards or downwards in

program space. A RELO command will be rejected if the moved block would

extend past step 255.

All branch constant branches (anywhere in program space) to an instruction

in the original block will be adjusted to jump to the instruction’s new location.

All branch register branches will have their step numbers listed. A human will

need to check if these can be affected. If start and newstart are the same, this

command will simply list all steps with branch register instructions.

– RELO 30,30,50 – move the instruction at step 30 to step 50. The origi-

nal instruction at step 50 will be lost. The instruction at step 30 will be

replaced with STOP.

– RELO 30,40,10 – move all instructions at steps 30 to 40 inclusive to

steps 10 to 20. The 11 instructions at 30 to 40 will be replaced with STOP.

111

– RELO 30,40,31 – move all instructions at steps 30 to 40 inclusive up by

one step number. This makes room for one new instruction at step 30.

The following example shows how to make space for two instructions to be

inserted into a block of code.

ArdEx> LIST 0,5

0 JMP 2

1 MOV #0,PORTB

2 WAIT 1000

3 ADD #1,PORTB

4 JMP 2

5 STOP

ArdEx> RELO 2,4,4

ArdEx> LIST 0,7

0 JMP 4

1 MOV #0,PORTB

2 STOP

3 STOP

4 WAIT 1000

5 ADD #1,PORTB

6 JMP 4

7 STOP

Note in the above example that the branches at step 0 and step 4 are both

updated though only the branch at step 4 is part of the block of instructions

being moved.

• RUN [step]
Begin free execution. With no arguments, begin at step 0, otherwise start at

step step.

• S
Processor executes one instruction then displays the next instruction to be ex-

ecuted and returns control to the user,

• SAVE [step[, step]]
Saves instructions from program memory to EEPROM. With no arguments, all

256 steps are saved. With one argument, just the instruction at that step is

saved. With two arguments, all instructions from step1 to step2 are saved.

• SS | STEP
SS | STEP nsteps
SS | STEP step, nsteps
Much like the S command. With no arguments, a single instruction is executed.

With one argument, nsteps instructions are executed. With two arguments,

nsteps instructions are executed starting with the instruction at step.

In all cases, register values and the next instruction to be executed are dis-

played just before control is returned to the user.

• STAT
Displays all register values in the current number BASE along with the values

in Carry and Zero flags and the CALL nest depth. The next instruction to be

executed is also shown.

D.3. INSTRUCTION SET SUMMARY 119

D.3 Instruction Set Summary

Instruction Action Z C

ADD src,dst dst = src+ dst • •

ADDC src,dst dst = src+ dst+ Carry • •

AND src,dst dst = src ∩ dst •

BIC src,dst dst = src ∩ dst

BIS src,dst dst = src ∪ dst

BIT src,dst DISCARD(src ∩ dst) • •

CALL step SAVE(current step); jump step

CMP src,dst DISCARD(dst− src) • •

IN dst dst = INPUT() •

JC step if Carry jump step

JEQ step if Zero jump step

JMP step jump step

JNC step if Carry jump step

JNE step if Zero jump step

MOV src,dst dst = src

OR src,dst dst = src ∪ dst •

OUT val16 OUTPUT(val16 ∩ 0xFF)

RET jump last saved step

ROL dst dst = 2× dst+ Carry • •

ROR dst dst = dst/2 + 0x80× Carry • •

SL dst dst = 2× dst • •

SR dst dst = dst/2 • •

STOP HALT()

SUB src,dst dst = dst− src • •

SUBC src,dst dst = dst− src− Carry • •

WAIT val16 PAUSE(val16× 100µs)

